Danish Mathspeak Steve Noble's samples. Locale: da, Style: Verbose.

0515623=negative 5 and one fifth minus 6 and two thirds equalsnegative 5 and en femtedel minus 6 and to tredjedele lig med
1734(478)=negative 7 and three fourths minus left parenthesis negative 4 and seven eighths right parenthesis equalsnegative 7 and tre fjerdedele minus venstre parantes negative 4 and syv ottendedele højre parantes lig med
224.15(13.7)=negative 24.15 minus left parenthesis 13.7 right parenthesis equalsnegative 24,15 minus venstre parantes 13,7 højre parantes lig med
3(4)×3=12left parenthesis negative 4 right parenthesis times 3 equals negative 12venstre parantes negative 4 højre parantes krydsprodukt 3 lig med negative 12
412÷3=4negative 12 divided by 3 equals negative 4negative 12 divided by 3 lig med negative 4
512÷(4)=3negative 12 divided by left parenthesis negative 4 right parenthesis equals 3negative 12 divided by venstre parantes negative 4 højre parantes lig med 3
66×56 times 56 krydsprodukt 5
76×(5)6 times left parenthesis negative 5 right parenthesis6 krydsprodukt venstre parantes negative 5 højre parantes
86×5negative 6 times 5negative 6 krydsprodukt 5
96×(5)negative 6 times left parenthesis negative 5 right parenthesisnegative 6 krydsprodukt venstre parantes negative 5 højre parantes
108×7negative 8 times 7negative 8 krydsprodukt 7
118×(7)negative 8 times left parenthesis negative 7 right parenthesisnegative 8 krydsprodukt venstre parantes negative 7 højre parantes
128×(7)8 times left parenthesis negative 7 right parenthesis8 krydsprodukt venstre parantes negative 7 højre parantes
138×78 times 78 krydsprodukt 7
14m1=30°m angle 1 equals 30 degreem vinkel 1 lig med 30 grader
15m2=60° m angle 2 equals 60 degreem vinkel 2 lig med 60 grader
16m1+m2=90° m angle 1 plus m angle 2 equals 90 degreem vinkel 1 plustegn m vinkel 2 lig med 90 grader
17mM+mN=180° m angle upper M plus m angle upper N equals 180 degreem vinkel stort M plustegn m vinkel stort N lig med 180 grader
18A=12bhupper A equals one half b hstort A lig med en halve b h
19area of trianglearea of square=1 unit216 units2StartFraction area of triangle Over area of square EndFraction equals StartFraction 1 unit squared Over 16 units squared EndFractionStart Brøk area of triangle Over area of square Slut Brøk lig med Start Brøk 1 unit squared Over 16 units squared Slut Brøk
200.620.6 squared0,6 squared
211.52 1.5 squared1,5 squared
224(2x+3x)4 left parenthesis 2 x plus 3 x right parenthesis4 venstre parantes 2 x plustegn 3 x højre parantes
2336+4y1y2+5y2236 plus 4 y minus 1 y squared plus 5 y squared minus 236 plustegn 4 y minus 1 y squared plustegn 5 y squared minus 2
24(5+9)4+3=left parenthesis 5 plus 9 right parenthesis minus 4 plus 3 equalsvenstre parantes 5 plustegn 9 højre parantes minus 4 plustegn 3 lig med
25BCModifyingAbove upper B upper C With left right arrowModifyingAbove stort B stort C With venstre-højre-pil
26PQModifyingAbove upper P upper Q With right arrowModifyingAbove stort P stort Q With højrevendt pil
27GH¯ModifyingAbove upper G upper H With barModifyingAbove stort G stort H With streg over
28WX¯YZ¯ModifyingAbove upper W upper X With bar approximately equals ModifyingAbove upper Y upper Z With barModifyingAbove stort W stort X With streg over tilnærmelsesvist lig med ModifyingAbove stort Y stort Z With streg over
29BEFangle upper B upper E upper Fvinkel stort B stort E stort F
30BEDangle upper B upper E upper Dvinkel stort B stort E stort D
31DEFangle upper D upper E upper Fvinkel stort D stort E stort F
32x=b±b24ac2ax equals StartFraction negative b plus or minus StartRoot b squared minus 4 a c EndRoot Over 2 a EndFractionx lig med Start Brøk negative b plus minus StartRod b squared minus 4 a c SlutRot Over 2 a Slut Brøk
33y=x2+8x+16y equals x squared plus 8 x plus 16y lig med x squared plustegn 8 x plustegn 16
34y=13(3x)y equals one third left parenthesis 3 Superscript x Baseline right parenthesisy lig med en tredjedel venstre parantes 3 Hævet x Grundlinje højre parantes
35y=102xy equals 10 minus 2 xy lig med 10 minus 2 x
36y=2x3+5y equals 2 x cubed plus 5y lig med 2 x cubed plustegn 5
37y=(x2+1)(x2+3)y equals left parenthesis x squared plus 1 right parenthesis left parenthesis x squared plus 3 right parenthesisy lig med venstre parantes x squared plustegn 1 højre parantes venstre parantes x squared plustegn 3 højre parantes
38y=0.5xy equals 0.5 Superscript xy lig med 0,5 Hævet x
39y=222xy equals 22 minus 2 xy lig med 22 minus 2 x
40y=3xy equals StartFraction 3 Over x EndFractiony lig med Start Brøk 3 Over x Slut Brøk
41y=(x+4)(x+4)y equals left parenthesis x plus 4 right parenthesis left parenthesis x plus 4 right parenthesisy lig med venstre parantes x plustegn 4 højre parantes venstre parantes x plustegn 4 højre parantes
42y=(4x3)(x+1)y equals left parenthesis 4 x minus 3 right parenthesis left parenthesis x plus 1 right parenthesisy lig med venstre parantes 4 x minus 3 højre parantes venstre parantes x plustegn 1 højre parantes
43y=20x4x2y equals 20 x minus 4 x squaredy lig med 20 x minus 4 x squared
44y=x2y equals x squaredy lig med x squared
45y=3x1y equals 3 Superscript x minus 1y lig med 3 Hævet x minus 1
46y=162(x+3)y equals 16 minus 2 left parenthesis x plus 3 right parenthesisy lig med 16 minus 2 venstre parantes x plustegn 3 højre parantes
47y=4x2x3y equals 4 x squared minus x minus 3y lig med 4 x squared minus x minus 3
48y=x+1xy equals x plus StartFraction 1 Over x EndFractiony lig med x plustegn Start Brøk 1 Over x Slut Brøk
49y=4x(5x)y equals 4 x left parenthesis 5 minus x right parenthesisy lig med 4 x venstre parantes 5 minus x højre parantes
50y=2(x3)+6(1x)y equals 2 left parenthesis x minus 3 right parenthesis plus 6 left parenthesis 1 minus x right parenthesisy lig med 2 venstre parantes x minus 3 højre parantes plustegn 6 venstre parantes 1 minus x højre parantes
510.25>516 0.25 greater than five sixteenths0,25 større end fem sekstendedele
5232(57)32 dot left parenthesis 5 dot 7 right parenthesis32 prik venstre parantes 5 prik 7 højre parantes
53(12×12×π×2)+(2×12×π×5)left parenthesis one half times one half times pi times 2 right parenthesis plus left parenthesis 2 times one half times pi times 5 right parenthesisvenstre parantes en halve krydsprodukt en halve krydsprodukt pi krydsprodukt 2 højre parantes plustegn venstre parantes 2 krydsprodukt en halve krydsprodukt pi krydsprodukt 5 højre parantes
54liminfnEn=n1knEk,limsupnEn=n1knEk.liminf Underscript n right arrow infinity Endscripts upper E Subscript n Baseline equals union Underscript n greater than or equals 1 Endscripts intersection Underscript k greater than or equals n Endscripts upper E Subscript k Baseline comma limsup Underscript n right arrow infinity Endscripts upper E Subscript n Baseline equals intersection Underscript n greater than or equals 1 Endscripts union Underscript k greater than or equals n Endscripts upper E Subscript k Baseline periodlimes inferior Undertekst n højrevendt pil uendelig stort E Sænket n Grundlinje lig med forening Undertekst n større end eller lig med 1 snit Undertekst k større end eller lig med n stort E Sænket k Grundlinje komma limes superior Undertekst n højrevendt pil uendelig stort E Sænket n Grundlinje lig med snit Undertekst n større end eller lig med 1 forening Undertekst k større end eller lig med n stort E Sænket k Grundlinje prik
55(i)𝒮𝒜;(ii)ifE𝒜thenE𝒜;(iii)ifE1,E2𝒜thenE1E2𝒜.StartLayout 1st Row 1st Column left parenthesis i right parenthesis 2nd Column script upper S element of script upper A semicolon 2nd Row 1st Column left parenthesis ii right parenthesis 2nd Column if upper E element of script upper A then upper E overbar element of script upper A semicolon 3rd Row 1st Column left parenthesis iii right parenthesis 2nd Column if upper E 1 comma upper E 2 element of script upper A then upper E 1 union upper E 2 element of script upper A period EndLayoutStartLayout 1. Row 1. Column venstre parantes I højre parantes 2. Column håndskrift stort S håndskrift element i håndskrift stort A håndskrift semikolon 2. Row 1. Column venstre parantes ii højre parantes 2. Column if stort E element i håndskrift stort A håndskrift then stort E overbar element i håndskrift stort A håndskrift semikolon 3. Row 1. Column venstre parantes iii højre parantes 2. Column if stort E 1 komma stort E 2 element i håndskrift stort A håndskrift then stort E 1 forening stort E 2 element i håndskrift stort A håndskrift prik EndLayout
56(A.1)IfAthen0P{A}1.(1)(A.2)P{𝒮}=1.(2)(A.3)If{En,n1}is a sequence ofdisjoint(3)StartLayout 1st Row 1st Column Blank 2nd Column Blank 3rd Column left parenthesis normal upper A period 1 right parenthesis upper I f upper A element of script upper F t h e n 0 less than or equals upper P left brace upper A right brace less than or equals 1 period 4th Column left parenthesis 1 right parenthesis 2nd Row 1st Column Blank 2nd Column Blank 3rd Column left parenthesis normal upper A period 2 right parenthesis upper P left brace script upper S right brace equals 1 period 4th Column left parenthesis 2 right parenthesis 3rd Row 1st Column Blank 2nd Column Blank 3rd Column left parenthesis normal upper A period 3 right parenthesis upper I f left brace upper E Subscript n Baseline comma n greater than or equals 1 right brace element of script upper F is a sequence of disjoint 4th Column left parenthesis 3 right parenthesis EndLayoutStartLayout 1. Row 1. Column Blank 2. Column Blank 3. Column venstre parantes normal stort A prik 1 højre parantes stort I f stort A element i håndskrift stort F håndskrift t h e n 0 mindre end eller lig med stort P venstre tuborg parantes stort A højre tuborg parantes mindre end eller lig med 1 prik 4. Column venstre parantes 1 højre parantes 2. Row 1. Column Blank 2. Column Blank 3. Column venstre parantes normal stort A prik 2 højre parantes stort P venstre tuborg parantes håndskrift stort S håndskrift højre tuborg parantes lig med 1 prik 4. Column venstre parantes 2 højre parantes 3. Row 1. Column Blank 2. Column Blank 3. Column venstre parantes normal stort A prik 3 højre parantes stort I f venstre tuborg parantes stort E Sænket n Grundlinje komma n større end eller lig med 1 højre tuborg parantes element i håndskrift stort F håndskrift is a sequence of disjoint 4. Column venstre parantes 3 højre parantes EndLayout
57P{Bj|A}=P{Bj}P{A|Bj}jJP{Bj}P{A|Bj}.upper P left brace upper B Subscript j Baseline vertical bar upper A right brace equals StartFraction upper P left brace upper B Subscript j Baseline right brace upper P left brace upper A vertical bar upper B Subscript j Baseline right brace Over sigma summation Underscript j prime element of upper J Endscripts upper P left brace upper B Subscript j prime Baseline right brace upper P left brace upper A vertical bar upper B Subscript j prime Baseline right brace EndFraction periodstort P venstre tuborg parantes stort B Sænket j Grundlinje lodret linie stort A højre tuborg parantes lig med Start Brøk stort P venstre tuborg parantes stort B Sænket j Grundlinje højre tuborg parantes stort P venstre tuborg parantes stort A lodret linie stort B Sænket j Grundlinje højre tuborg parantes Over sum Undertekst j mærke element i stort J stort P venstre tuborg parantes stort B Sænket j mærke Grundlinje højre tuborg parantes stort P venstre tuborg parantes stort A lodret linie stort B Sænket j mærke Grundlinje højre tuborg parantes Slut Brøk prik
58μ1(B)=Bf(x)dμ2(x)mu 1 left parenthesis upper B right parenthesis equals integral Underscript upper B Endscripts f left parenthesis x right parenthesis d mu 2 left parenthesis x right parenthesismy 1 venstre parantes stort B højre parantes lig med integral Undertekst stort B f venstre parantes x højre parantes d my 2 venstre parantes x højre parantes
59limnE{|XnX|}=E{limn|XnX|}=0.limit Underscript n right arrow infinity Endscripts upper E left brace StartAbsoluteValue upper X Subscript n Baseline minus upper X EndAbsoluteValue right brace equals upper E left brace limit Underscript n right arrow infinity Endscripts StartAbsoluteValue upper X Subscript n Baseline minus upper X EndAbsoluteValue right brace equals 0 periodgrænseværdi Undertekst n højrevendt pil uendelig stort E venstre tuborg parantes StartAbsoluteValue stort X Sænket n Grundlinje minus stort X EndAbsoluteValue højre tuborg parantes lig med stort E venstre tuborg parantes grænseværdi Undertekst n højrevendt pil uendelig StartAbsoluteValue stort X Sænket n Grundlinje minus stort X EndAbsoluteValue højre tuborg parantes lig med 0 prik
60Pμ,σ{Ylβ(Yn,Sn)}=Pμ,σ{(YYn)/(S·(1+1n)1/2)tβ[n1]}=β,(1)StartLayout 1st Row 1st Column upper P Subscript mu comma sigma Baseline left brace upper Y greater than or equals l Subscript beta Baseline left parenthesis upper Y overbar Subscript n Baseline comma upper S Subscript n Baseline right parenthesis right brace equals upper P Subscript mu comma sigma Baseline left brace left parenthesis upper Y minus upper Y overbar Subscript n Baseline right parenthesis divided by left parenthesis upper S dot left parenthesis 1 plus StartFraction 1 Over n EndFraction right parenthesis Superscript 1 divided by 2 Baseline right parenthesis greater than or equals minus t Subscript beta Baseline left bracket n minus 1 right bracket right brace equals beta comma 2nd Row 1st Column Blank 2nd Column left parenthesis 1 right parenthesis EndLayoutStartLayout 1. Row 1. Column stort P Sænket my komma sigma Grundlinje venstre tuborg parantes stort Y større end eller lig med l Sænket beta Grundlinje venstre parantes stort Y overbar Sænket n Grundlinje komma stort S Sænket n Grundlinje højre parantes højre tuborg parantes lig med stort P Sænket my komma sigma Grundlinje venstre tuborg parantes venstre parantes stort Y minus stort Y overbar Sænket n Grundlinje højre parantes divided by venstre parantes stort S prik venstre parantes 1 plustegn Start Brøk 1 Over n Slut Brøk højre parantes Hævet 1 divided by 2 Grundlinje højre parantes større end eller lig med minus t Sænket beta Grundlinje kantet venstreparentes n minus 1 kantet højreparentes højre tuborg parantes lig med beta komma 2. Row 1. Column Blank 2. Column venstre parantes 1 højre parantes EndLayout
61L=(11110011).upper L equals Start 5 By 6 Matrix 1st Row 1st Column 1 2nd Column negative 1 3rd Column Blank 4th Column Blank 5th Column Blank 6th Column Blank 2nd Row 1st Column Blank 2nd Column 1 3rd Column negative 1 4th Column Blank 5th Column 0 6th Column Blank 3rd Row 1st Column Blank 2nd Column Blank 3rd Column Blank 4th Column Blank 5th Column Blank 6th Column Blank 4th Row 1st Column Blank 2nd Column 0 3rd Column Blank 4th Column Blank 5th Column Blank 6th Column Blank 5th Row 1st Column Blank 2nd Column Blank 3rd Column Blank 4th Column Blank 5th Column 1 6th Column negative 1 EndMatrix periodstort L lig med Start 5 By 6 Matrix 1. Row 1. Column 1 2. Column negative 1 3. Column Blank 4. Column Blank 5. Column Blank 6. Column Blank 2. Row 1. Column Blank 2. Column 1 3. Column negative 1 4. Column Blank 5. Column 0 6. Column Blank 3. Row 1. Column Blank 2. Column Blank 3. Column Blank 4. Column Blank 5. Column Blank 6. Column Blank 4. Row 1. Column Blank 2. Column 0 3. Column Blank 4. Column Blank 5. Column Blank 6. Column Blank 5. Row 1. Column Blank 2. Column Blank 3. Column Blank 4. Column Blank 5. Column 1 6. Column negative 1 EndMatrix prik
62n[Yn(μ+zβσ)]/Sn~U+nz1β(χ2[n1]/(n1))1/2~t[n1;nz1β],StartRoot n EndRoot left bracket upper Y overbar Subscript n Baseline minus left parenthesis mu plus z Subscript beta Baseline sigma right parenthesis right bracket divided by upper S Subscript n Baseline tilde StartFraction upper U plus StartRoot n EndRoot z Subscript 1 minus beta Baseline Over left parenthesis chi squared left bracket n minus 1 right bracket divided by left parenthesis n minus 1 right parenthesis right parenthesis Superscript 1 divided by 2 Baseline EndFraction tilde t left bracket n minus 1 semicolon StartRoot n EndRoot z Subscript 1 minus beta Baseline right bracket commaStartRod n SlutRot kantet venstreparentes stort Y overbar Sænket n Grundlinje minus venstre parantes my plustegn z Sænket beta Grundlinje sigma højre parantes kantet højreparentes divided by stort S Sænket n Grundlinje tilde Start Brøk stort U plustegn StartRod n SlutRot z Sænket 1 minus beta Grundlinje Over venstre parantes chi squared kantet venstreparentes n minus 1 kantet højreparentes divided by venstre parantes n minus 1 højre parantes højre parantes Hævet 1 divided by 2 Grundlinje Slut Brøk tilde t kantet venstreparentes n minus 1 semikolon StartRod n SlutRot z Sænket 1 minus beta Grundlinje kantet højreparentes komma
63γ=P{Ep,q(X(r),X(s)}=n!(r1)!j=0 sr1(1)jpr+j(nrj)!j!I1q(ns+1,srj).StartLayout 1st Row 1st Column gamma 2nd Column equals upper P left brace upper E Subscript p comma q Baseline subset of left parenthesis upper X Subscript left parenthesis r right parenthesis Baseline comma upper X Subscript left parenthesis s right parenthesis Baseline right brace 2nd Row 1st Column Blank 2nd Column equals StartFraction n factorial Over left parenthesis r minus 1 right parenthesis factorial EndFraction sigma summation Underscript j equals 0 Overscript s minus r minus 1 Endscripts left parenthesis negative 1 right parenthesis Superscript j Baseline StartFraction p Superscript r plus j Baseline Over left parenthesis n minus r minus j right parenthesis factorial j factorial EndFraction upper I Subscript 1 minus q Baseline left parenthesis n minus s plus 1 comma s minus r minus j right parenthesis period EndLayoutStartLayout 1. Row 1. Column gamma 2. Column lig med stort P venstre tuborg parantes stort E Sænket p komma q Grundlinje delmængde af venstre parantes stort X Sænket venstre parantes r højre parantes Grundlinje komma stort X Sænket venstre parantes s højre parantes Grundlinje højre tuborg parantes 2. Row 1. Column Blank 2. Column lig med Start Brøk n factorial Over venstre parantes r minus 1 højre parantes factorial Slut Brøk sum Undertekst j lig med 0 Overtekst s minus r minus 1 venstre parantes negative 1 højre parantes Hævet j Grundlinje Start Brøk p Hævet r plustegn j Grundlinje Over venstre parantes n minus r minus j højre parantes factorial j factorial Slut Brøk stort I Sænket 1 minus q Grundlinje venstre parantes n minus s plustegn 1 komma s minus r minus j højre parantes prik EndLayout
64Sitx=1/m0airitx+(i1)/mbi,upper S Subscript i Baseline StartBinomialOrMatrix t Choose x EndBinomialOrMatrix equals Start 2 By 2 Matrix 1st Row 1st Column 1 divided by m 2nd Column 0 2nd Row 1st Column a Subscript i Baseline 2nd Column r Subscript i Baseline EndMatrix StartBinomialOrMatrix t Choose x EndBinomialOrMatrix plus StartBinomialOrMatrix left parenthesis i minus 1 right parenthesis divided by m Choose b Subscript i Baseline EndBinomialOrMatrix commastort S Sænket I Grundlinje StartBinomialOrMatrix t Choose x EndBinomialOrMatrix lig med Start 2 By 2 Matrix 1. Row 1. Column 1 divided by m 2. Column 0 2. Row 1. Column a Sænket I Grundlinje 2. Column r Sænket I Grundlinje EndMatrix StartBinomialOrMatrix t Choose x EndBinomialOrMatrix plustegn StartBinomialOrMatrix venstre parantes I minus 1 højre parantes divided by m Choose b Sænket I Grundlinje EndBinomialOrMatrix komma
65c1h42s12TTT(f(t+h)f(t))2dtc2h42sc 1 h Superscript 4 minus 2 s Baseline less than or equals StartFraction 1 Over 2 upper T EndFraction integral Subscript negative upper T Superscript upper T Baseline left parenthesis f left parenthesis t plus h right parenthesis minus f left parenthesis t right parenthesis right parenthesis squared normal d t less than or equals c 2 h Superscript 4 minus 2 sc 1 h Hævet 4 minus 2 s Grundlinje mindre end eller lig med Start Brøk 1 Over 2 stort T Slut Brøk integral Subscript negative stort T Superscript stort T Baseline venstre parantes f venstre parantes t plustegn h højre parantes minus f venstre parantes t højre parantes højre parantes squared normal d t mindre end eller lig med c 2 h Hævet 4 minus 2 s
66C(0)C(h)ch42supper C left parenthesis 0 right parenthesis minus upper C left parenthesis h right parenthesis asymptotically equals c h Superscript 4 minus 2 sstort C venstre parantes 0 højre parantes minus stort C venstre parantes h højre parantes asymptotisk lig med c h Hævet 4 minus 2 s
67S(ω)=limT12TTTf(t)eitωdt2.upper S left parenthesis omega right parenthesis equals limit Underscript upper T right arrow infinity Endscripts StartFraction 1 Over 2 upper T EndFraction StartAbsoluteValue integral Subscript negative upper T Superscript upper T Baseline comma f comma left parenthesis comma t comma right parenthesis comma normal e Superscript italic i t omega Baseline comma normal d comma t EndAbsoluteValue squared periodstort S venstre parantes omega højre parantes lig med grænseværdi Undertekst stort T højrevendt pil uendelig Start Brøk 1 Over 2 stort T Slut Brøk StartAbsoluteValue integral Subscript negative stort T Superscript stort T Baseline komma f komma venstre parantes komma t komma højre parantes komma normal e Hævet kursiv I t omega Grundlinje komma normal d komma t EndAbsoluteValue squared prik
680101[|f(t)f(u)|2+|tu|2]s/2dtdu<integral Subscript 0 Superscript 1 Baseline integral Subscript 0 Superscript 1 Baseline left bracket StartAbsoluteValue f left parenthesis t right parenthesis minus f left parenthesis u right parenthesis EndAbsoluteValue squared plus StartAbsoluteValue t minus u EndAbsoluteValue squared right bracket Superscript negative s divided by 2 Baseline normal d t normal d u less than infinityintegral Subscript 0 Superscript 1 Baseline integral Subscript 0 Superscript 1 Baseline kantet venstreparentes StartAbsoluteValue f venstre parantes t højre parantes minus f venstre parantes u højre parantes EndAbsoluteValue squared plustegn StartAbsoluteValue t minus u EndAbsoluteValue squared kantet højreparentes Hævet negative s divided by 2 Grundlinje normal d t normal d u mindre end uendelig
69EIEk+1|I|s=EIEk|I|sE(R1s+R2s).sans serif upper E left parenthesis sigma summation Underscript upper I element of upper E Subscript k plus 1 Baseline Endscripts StartAbsoluteValue upper I EndAbsoluteValue Superscript s Baseline right parenthesis equals sans serif upper E left parenthesis sigma summation Underscript upper I element of upper E Subscript k Baseline Endscripts StartAbsoluteValue upper I EndAbsoluteValue Superscript s Baseline right parenthesis sans serif upper E left parenthesis upper R 1 Superscript s Baseline plus upper R 2 Superscript s Baseline right parenthesis periodsans serif stort E venstre parantes sum Undertekst stort I element i stort E Sænket k plustegn 1 Grundlinje StartAbsoluteValue stort I EndAbsoluteValue Hævet s Grundlinje højre parantes lig med sans serif stort E venstre parantes sum Undertekst stort I element i stort E Sænket k Grundlinje StartAbsoluteValue stort I EndAbsoluteValue Hævet s Grundlinje højre parantes sans serif stort E venstre parantes stort R 1 Hævet s Grundlinje plustegn stort R 2 Hævet s Grundlinje højre parantes prik
70(x1,y1)left parenthesis x 1 comma y 1 right parenthesisvenstre parantes x 1 komma y 1 højre parantes
71(x2,y2)left parenthesis x 2 comma y 2 right parenthesisvenstre parantes x 2 komma y 2 højre parantes
72d=(x2x1)2+(y2y1)2d equals StartRoot left parenthesis x 2 minus x 1 right parenthesis squared plus left parenthesis y 2 minus y 1 right parenthesis squared EndRootd lig med StartRod venstre parantes x 2 minus x 1 højre parantes squared plustegn venstre parantes y 2 minus y 1 højre parantes squared SlutRot
73double struck upper Rdobbeltstreget stort R dobbeltstreget
74=(,)double struck upper R equals left parenthesis negative infinity comma infinity right parenthesisdobbeltstreget stort R dobbeltstreget lig med venstre parantes negative uendelig komma uendelig højre parantes
75{ 1,2,3 }StartSet 1 comma 2 comma 3 EndSetStartSet 1 komma 2 komma 3 EndSet
761S1 element of upper S1 element i stort S
773S3 element of upper S3 element i stort S
784S4 not an element of upper S4 ikke element i stort S
79a=3x1+(1+x)2a equals StartRoot 3 x minus 1 EndRoot plus left parenthesis 1 plus x right parenthesis squareda lig med StartRod 3 x minus 1 SlutRot plustegn venstre parantes 1 plustegn x højre parantes squared
80a=(b+c)2d+(e+f)2ga equals StartFraction left parenthesis b plus c right parenthesis squared Over d EndFraction plus StartFraction left parenthesis e plus f right parenthesis squared Over g EndFractiona lig med Start Brøk venstre parantes b plustegn c højre parantes squared Over d Slut Brøk plustegn Start Brøk venstre parantes e plustegn f højre parantes squared Over g Slut Brøk
81x=[ (a+b)2(cb)2 ]+[ (d+e)2(fe)2 ]x equals left bracket left parenthesis a plus b right parenthesis squared left parenthesis c minus b right parenthesis squared right bracket plus left bracket left parenthesis d plus e right parenthesis squared left parenthesis f minus e right parenthesis squared right bracketx lig med kantet venstreparentes venstre parantes a plustegn b højre parantes squared venstre parantes c minus b højre parantes squared kantet højreparentes plustegn kantet venstreparentes venstre parantes d plustegn e højre parantes squared venstre parantes f minus e højre parantes squared kantet højreparentes
82x=[ (a+b)2 ]+[ (fe)2 ]x equals left bracket left parenthesis a plus b right parenthesis squared right bracket plus left bracket left parenthesis f minus e right parenthesis squared right bracketx lig med kantet venstreparentes venstre parantes a plustegn b højre parantes squared kantet højreparentes plustegn kantet venstreparentes venstre parantes f minus e højre parantes squared kantet højreparentes
83x=[ (a+b)2 ]x equals left bracket left parenthesis a plus b right parenthesis squared right bracketx lig med kantet venstreparentes venstre parantes a plustegn b højre parantes squared kantet højreparentes
84x=(a+b)2x equals left parenthesis a plus b right parenthesis squaredx lig med venstre parantes a plustegn b højre parantes squared
85x=a+b2x equals a plus b squaredx lig med a plustegn b squared
861234=23StartFraction one half Over three fourths EndFraction equals two thirdsStart Brøk en halve Over tre fjerdedele Slut Brøk lig med to tredjedele
872((x+1)(x+3)4((x1)(x+2)3))=y2 left parenthesis left parenthesis x plus 1 right parenthesis left parenthesis x plus 3 right parenthesis minus 4 left parenthesis left parenthesis x minus 1 right parenthesis left parenthesis x plus 2 right parenthesis minus 3 right parenthesis right parenthesis equals y2 venstre parantes venstre parantes x plustegn 1 højre parantes venstre parantes x plustegn 3 højre parantes minus 4 venstre parantes venstre parantes x minus 1 højre parantes venstre parantes x plustegn 2 højre parantes minus 3 højre parantes højre parantes lig med y
88cosx=1x22!+x44!cosine x equals 1 minus StartFraction x squared Over 2 factorial EndFraction plus StartFraction x Superscript 4 Baseline Over 4 factorial EndFraction minus ellipsiscosinus x lig med 1 minus Start Brøk x squared Over 2 factorial Slut Brøk plustegn Start Brøk x Hævet 4 Grundlinje Over 4 factorial Slut Brøk minus prik prik prik
89x=b±b24ac2ax equals StartFraction negative b plus or minus StartRoot b squared minus 4 a c EndRoot Over 2 a EndFractionx lig med Start Brøk negative b plus minus StartRod b squared minus 4 a c SlutRot Over 2 a Slut Brøk
90x+y2k+1x plus y Superscript StartFraction 2 Over k plus 1 EndFractionx plustegn y Hævet Start Brøk 2 Over k plustegn 1 Slut Brøk
91limx0sinxx=1limit Underscript x right arrow 0 Endscripts StartFraction sine x Over x EndFraction equals 1grænseværdi Undertekst x højrevendt pil 0 Start Brøk sinus x Over x Slut Brøk lig med 1
92d=(x2x1)2+(y2y1)2d equals StartRoot left parenthesis x 2 minus x 1 right parenthesis squared plus left parenthesis y 2 minus y 1 right parenthesis squared EndRootd lig med StartRod venstre parantes x 2 minus x 1 højre parantes squared plustegn venstre parantes y 2 minus y 1 højre parantes squared SlutRot
93Fn=Fn1+Fn2upper F Subscript n Baseline equals upper F Subscript n minus 1 Baseline plus upper F Subscript n minus 2stort F Sænket n Grundlinje lig med stort F Sænket n minus 1 Grundlinje plustegn stort F Sænket n minus 2
94Π=(π11π12π12000π12π11π12000π12π12π11000000π44000000π44000000π44)bold upper Pi equals Start 6 By 6 Matrix 1st Row 1st Column pi 11 2nd Column pi 12 3rd Column pi 12 4th Column 0 5th Column 0 6th Column 0 2nd Row 1st Column pi 12 2nd Column pi 11 3rd Column pi 12 4th Column 0 5th Column 0 6th Column 0 3rd Row 1st Column pi 12 2nd Column pi 12 3rd Column pi 11 4th Column 0 5th Column 0 6th Column 0 4th Row 1st Column 0 2nd Column 0 3rd Column 0 4th Column pi 44 5th Column 0 6th Column 0 5th Row 1st Column 0 2nd Column 0 3rd Column 0 4th Column 0 5th Column pi 44 6th Column 0 6th Row 1st Column 0 2nd Column 0 3rd Column 0 4th Column 0 5th Column 0 6th Column pi 44 EndMatrixfed stort Pi lig med Start 6 By 6 Matrix 1. Row 1. Column pi 11 2. Column pi 12 3. Column pi 12 4. Column 0 5. Column 0 6. Column 0 2. Row 1. Column pi 12 2. Column pi 11 3. Column pi 12 4. Column 0 5. Column 0 6. Column 0 3. Row 1. Column pi 12 2. Column pi 12 3. Column pi 11 4. Column 0 5. Column 0 6. Column 0 4. Row 1. Column 0 2. Column 0 3. Column 0 4. Column pi 44 5. Column 0 6. Column 0 5. Row 1. Column 0 2. Column 0 3. Column 0 4. Column 0 5. Column pi 44 6. Column 0 6. Row 1. Column 0 2. Column 0 3. Column 0 4. Column 0 5. Column 0 6. Column pi 44 EndMatrix
95s11=c11+c12c11c12c11+2c12s 11 equals StartFraction c 11 plus c 12 Over left parenthesis c 11 minus c 12 right parenthesis left parenthesis c 11 plus 2 c 12 right parenthesis EndFractions 11 lig med Start Brøk c 11 plustegn c 12 Over venstre parantes c 11 minus c 12 højre parantes venstre parantes c 11 plustegn 2 c 12 højre parantes Slut Brøk
96SiO2+ 6HF H2 SiF6+ 2H2O upper S i normal upper O 2 plus 6 normal upper H normal upper F right arrow normal upper H 2 upper S i normal upper F 6 plus 2 normal upper H 2 normal upper Ostort S I normal stort O 2 plustegn 6 normal stort H normal stort F højrevendt pil normal stort H 2 stort S I normal stort F 6 plustegn 2 normal stort H 2 normal stort O
97ddx(E(x)A(x)dw(x)dx)+p(x)=0StartFraction d Over d x EndFraction left parenthesis upper E left parenthesis x right parenthesis upper A left parenthesis x right parenthesis StartFraction d w left parenthesis x right parenthesis Over d x EndFraction right parenthesis plus p left parenthesis x right parenthesis equals 0Start Brøk d Over d x Slut Brøk venstre parantes stort E venstre parantes x højre parantes stort A venstre parantes x højre parantes Start Brøk d w venstre parantes x højre parantes Over d x Slut Brøk højre parantes plustegn p venstre parantes x højre parantes lig med 0
98TCSgas=12PsealPmax1TsealTCS Subscript gas Baseline equals minus one half left parenthesis StartFraction upper P Subscript seal Baseline Over upper P Subscript max Baseline EndFraction right parenthesis left parenthesis StartFraction 1 Over upper T Subscript seal Baseline EndFraction right parenthesisTCS Sænket gas Grundlinje lig med minus en halve venstre parantes Start Brøk stort P Sænket seal Grundlinje Over stort P Sænket maksimum Grundlinje Slut Brøk højre parantes venstre parantes Start Brøk 1 Over stort T Sænket seal Grundlinje Slut Brøk højre parantes
99Bp=7v231+c2a2+c4a4+3v2c21+va21v1c4a41c2a2upper B Subscript p Baseline equals StartStartFraction StartFraction 7 minus v squared Over 3 EndFraction left parenthesis 1 plus StartFraction c squared Over a squared EndFraction plus StartFraction c Superscript 4 Baseline Over a Superscript 4 Baseline EndFraction right parenthesis plus StartFraction left parenthesis 3 minus v right parenthesis squared c squared Over left parenthesis 1 plus v right parenthesis a squared EndFraction OverOver left parenthesis 1 minus v right parenthesis left parenthesis 1 minus StartFraction c Superscript 4 Baseline Over a Superscript 4 Baseline EndFraction right parenthesis left parenthesis 1 minus StartFraction c squared Over a squared EndFraction right parenthesis EndEndFractionstort B Sænket p Grundlinje lig med Start Start Brøk Start Brøk 7 minus v squared Over 3 Slut Brøk venstre parantes 1 plustegn Start Brøk c squared Over a squared Slut Brøk plustegn Start Brøk c Hævet 4 Grundlinje Over a Hævet 4 Grundlinje Slut Brøk højre parantes plustegn Start Brøk venstre parantes 3 minus v højre parantes squared c squared Over venstre parantes 1 plustegn v højre parantes a squared Slut Brøk Over Over venstre parantes 1 minus v højre parantes venstre parantes 1 minus Start Brøk c Hævet 4 Grundlinje Over a Hævet 4 Grundlinje Slut Brøk højre parantes venstre parantes 1 minus Start Brøk c squared Over a squared Slut Brøk højre parantes Slut Slut Brøk
100Qtankseries=1RsLsCsupper Q Subscript tank Superscript series Baseline equals StartFraction 1 Over upper R Subscript s Baseline EndFraction StartRoot StartFraction upper L Subscript s Baseline Over upper C Subscript s Baseline EndFraction EndRootstort Q Sænket tank Hævet series Grundlinje lig med Start Brøk 1 Over stort R Sænket s Grundlinje Slut Brøk StartRod Start Brøk stort L Sænket s Grundlinje Over stort C Sænket s Grundlinje Slut Brøk SlutRot
101Δϕpeak=tan1(k2Qtankseries)upper Delta phi Subscript peak Baseline equals tangent Superscript negative 1 Baseline left parenthesis k squared upper Q Subscript tank Superscript series Baseline right parenthesistrekant phi Sænket peak Grundlinje lig med tangens Hævet negative 1 Grundlinje venstre parantes k squared stort Q Sænket tank Hævet series Grundlinje højre parantes
102f=1.013WL2Eρ(1+0.293L2EW2σ)f equals 1.013 StartFraction upper W Over upper L squared EndFraction StartRoot StartFraction upper E Over rho EndFraction EndRoot StartRoot left parenthesis 1 plus 0.293 StartFraction upper L squared Over EW squared EndFraction sigma right parenthesis EndRootf lig med 1.013 Start Brøk stort W Over stort L squared Slut Brøk StartRod Start Brøk stort E Over rho Slut Brøk SlutRot StartRod venstre parantes 1 plustegn 0.293 Start Brøk stort L squared Over EW squared Slut Brøk sigma højre parantes SlutRot
103unx=γncoshknxcosknx+sinhknxsinknxu Subscript n Baseline left parenthesis x right parenthesis equals gamma Subscript n Baseline left parenthesis hyperbolic cosine k Subscript n Baseline x minus cosine k Subscript n Baseline x right parenthesis plus left parenthesis hyperbolic sine k Subscript n Baseline x minus sine k Subscript n Baseline x right parenthesisu Sænket n Grundlinje venstre parantes x højre parantes lig med gamma Sænket n Grundlinje venstre parantes hyperbolsk cosinus k Sænket n Grundlinje x minus cosinus k Sænket n Grundlinje x højre parantes plustegn venstre parantes sinus hyperbolsk k Sænket n Grundlinje x minus sinus k Sænket n Grundlinje x højre parantes
104B=F0m(ω02ω2)2+4n2ω2=F0k(1(ω/ω02)2)2+4(n/ω0)2(ω/ω0)2StartLayout 1st Row 1st Column upper B 2nd Column equals StartStartFraction StartFraction upper F 0 Over m EndFraction OverOver StartRoot left parenthesis omega 0 squared minus omega squared right parenthesis squared plus 4 n squared omega squared EndRoot EndEndFraction 2nd Row 1st Column Blank 2nd Column equals StartStartFraction StartFraction upper F 0 Over k EndFraction OverOver StartRoot left parenthesis 1 minus left parenthesis omega divided by omega 0 squared right parenthesis squared right parenthesis squared plus 4 left parenthesis n divided by omega 0 right parenthesis squared left parenthesis omega divided by omega 0 right parenthesis squared EndRoot EndEndFraction EndLayoutStartLayout 1. Row 1. Column stort B 2. Column lig med Start Start Brøk Start Brøk stort F 0 Over m Slut Brøk Over Over StartRod venstre parantes omega 0 squared minus omega squared højre parantes squared plustegn 4 n squared omega squared SlutRot Slut Slut Brøk 2. Row 1. Column Blank 2. Column lig med Start Start Brøk Start Brøk stort F 0 Over k Slut Brøk Over Over StartRod venstre parantes 1 minus venstre parantes omega divided by omega 0 squared højre parantes squared højre parantes squared plustegn 4 venstre parantes n divided by omega 0 højre parantes squared venstre parantes omega divided by omega 0 højre parantes squared SlutRot Slut Slut Brøk EndLayout
105p(AandB)=p(A)p(B|A)normal p left parenthesis upper A a n d upper B right parenthesis equals normal p left parenthesis upper A right parenthesis normal p left parenthesis upper B vertical bar upper A right parenthesisnormal p venstre parantes stort A a n d stort B højre parantes lig med normal p venstre parantes stort A højre parantes normal p venstre parantes stort B lodret linie stort A højre parantes
106PMF(x)1xαupper P upper M upper F left parenthesis x right parenthesis proportional to left parenthesis StartFraction 1 Over x EndFraction right parenthesis Superscript alphastort P stort M stort F venstre parantes x højre parantes proportional til venstre parantes Start Brøk 1 Over x Slut Brøk højre parantes Hævet alfa
107f(x)=12πexp(-x2/2)f left parenthesis x right parenthesis equals StartFraction 1 Over StartRoot 2 pi EndRoot EndFraction exp left parenthesis minus x squared slash 2 right parenthesisf venstre parantes x højre parantes lig med Start Brøk 1 Over StartRod 2 pi SlutRot Slut Brøk eksponentiel venstre parantes minus x squared skråstreg 2 højre parantes
108dxdθ=βcos2θStartFraction d x Over d theta EndFraction equals StartFraction beta Over cosine squared theta EndFractionStart Brøk d x Over d theta Slut Brøk lig med Start Brøk beta Over cosinus squared theta Slut Brøk
109s/2(n-1)s divided by StartRoot 2 left parenthesis n minus 1 right parenthesis EndRoots divided by StartRod 2 venstre parantes n minus 1 højre parantes SlutRot

Danish Mathspeak Steve Noble's samples. Locale: da, Style: Brief.

0515623=negative 5 and one fifth minus 6 and two thirds equalsnegative 5 and en femtedel minus 6 and to tredjedele lig med
1734(478)=negative 7 and three fourths minus left p'ren negative 4 and seven eighths right p'ren equalsnegative 7 and tre fjerdedele minus venstre parantes negative 4 and syv ottendedele højre parantes lig med
224.15(13.7)=negative 24.15 minus left p'ren 13.7 right p'ren equalsnegative 24,15 minus venstre parantes 13,7 højre parantes lig med
3(4)×3=12left p'ren negative 4 right p'ren times 3 equals negative 12venstre parantes negative 4 højre parantes krydsprodukt 3 lig med negative 12
412÷3=4negative 12 divided by 3 equals negative 4negative 12 divided by 3 lig med negative 4
512÷(4)=3negative 12 divided by left p'ren negative 4 right p'ren equals 3negative 12 divided by venstre parantes negative 4 højre parantes lig med 3
66×56 times 56 krydsprodukt 5
76×(5)6 times left p'ren negative 5 right p'ren6 krydsprodukt venstre parantes negative 5 højre parantes
86×5negative 6 times 5negative 6 krydsprodukt 5
96×(5)negative 6 times left p'ren negative 5 right p'rennegative 6 krydsprodukt venstre parantes negative 5 højre parantes
108×7negative 8 times 7negative 8 krydsprodukt 7
118×(7)negative 8 times left p'ren negative 7 right p'rennegative 8 krydsprodukt venstre parantes negative 7 højre parantes
128×(7)8 times left p'ren negative 7 right p'ren8 krydsprodukt venstre parantes negative 7 højre parantes
138×78 times 78 krydsprodukt 7
14m1=30°m angle 1 equals 30 degreem vinkel 1 lig med 30 grader
15m2=60° m angle 2 equals 60 degreem vinkel 2 lig med 60 grader
16m1+m2=90° m angle 1 plus m angle 2 equals 90 degreem vinkel 1 plustegn m vinkel 2 lig med 90 grader
17mM+mN=180° m angle upper M plus m angle upper N equals 180 degreem vinkel stort M plustegn m vinkel stort N lig med 180 grader
18A=12bhupper A equals one half b hstort A lig med en halve b h
19area of trianglearea of square=1 unit216 units2StartFrac area of triangle Over area of square EndFrac equals StartFrac 1 unit squared Over 16 units squared EndFracStart Brøk area of triangle Over area of square Slut Brøk lig med Start Brøk 1 unit squared Over 16 units squared Slut Brøk
200.620.6 squared0,6 squared
211.52 1.5 squared1,5 squared
224(2x+3x)4 left p'ren 2 x plus 3 x right p'ren4 venstre parantes 2 x plustegn 3 x højre parantes
2336+4y1y2+5y2236 plus 4 y minus 1 y squared plus 5 y squared minus 236 plustegn 4 y minus 1 y squared plustegn 5 y squared minus 2
24(5+9)4+3=left p'ren 5 plus 9 right p'ren minus 4 plus 3 equalsvenstre parantes 5 plustegn 9 højre parantes minus 4 plustegn 3 lig med
25BCModAbove upper B upper C With left right arrowModAbove stort B stort C With venstre-højre-pil
26PQModAbove upper P upper Q With right arrowModAbove stort P stort Q With højrevendt pil
27GH¯ModAbove upper G upper H With barModAbove stort G stort H With streg over
28WX¯YZ¯ModAbove upper W upper X With bar approximately equals ModAbove upper Y upper Z With barModAbove stort W stort X With streg over tilnærmelsesvist lig med ModAbove stort Y stort Z With streg over
29BEFangle upper B upper E upper Fvinkel stort B stort E stort F
30BEDangle upper B upper E upper Dvinkel stort B stort E stort D
31DEFangle upper D upper E upper Fvinkel stort D stort E stort F
32x=b±b24ac2ax equals StartFrac negative b plus or minus StartRoot b squared minus 4 a c EndRoot Over 2 a EndFracx lig med Start Brøk negative b plus minus StartRod b squared minus 4 a c SlutRot Over 2 a Slut Brøk
33y=x2+8x+16y equals x squared plus 8 x plus 16y lig med x squared plustegn 8 x plustegn 16
34y=13(3x)y equals one third left p'ren 3 Sup x Base right p'reny lig med en tredjedel venstre parantes 3 Hævet x Basis højre parantes
35y=102xy equals 10 minus 2 xy lig med 10 minus 2 x
36y=2x3+5y equals 2 x cubed plus 5y lig med 2 x cubed plustegn 5
37y=(x2+1)(x2+3)y equals left p'ren x squared plus 1 right p'ren left p'ren x squared plus 3 right p'reny lig med venstre parantes x squared plustegn 1 højre parantes venstre parantes x squared plustegn 3 højre parantes
38y=0.5xy equals 0.5 Sup xy lig med 0,5 Hævet x
39y=222xy equals 22 minus 2 xy lig med 22 minus 2 x
40y=3xy equals StartFrac 3 Over x EndFracy lig med Start Brøk 3 Over x Slut Brøk
41y=(x+4)(x+4)y equals left p'ren x plus 4 right p'ren left p'ren x plus 4 right p'reny lig med venstre parantes x plustegn 4 højre parantes venstre parantes x plustegn 4 højre parantes
42y=(4x3)(x+1)y equals left p'ren 4 x minus 3 right p'ren left p'ren x plus 1 right p'reny lig med venstre parantes 4 x minus 3 højre parantes venstre parantes x plustegn 1 højre parantes
43y=20x4x2y equals 20 x minus 4 x squaredy lig med 20 x minus 4 x squared
44y=x2y equals x squaredy lig med x squared
45y=3x1y equals 3 Sup x minus 1y lig med 3 Hævet x minus 1
46y=162(x+3)y equals 16 minus 2 left p'ren x plus 3 right p'reny lig med 16 minus 2 venstre parantes x plustegn 3 højre parantes
47y=4x2x3y equals 4 x squared minus x minus 3y lig med 4 x squared minus x minus 3
48y=x+1xy equals x plus StartFrac 1 Over x EndFracy lig med x plustegn Start Brøk 1 Over x Slut Brøk
49y=4x(5x)y equals 4 x left p'ren 5 minus x right p'reny lig med 4 x venstre parantes 5 minus x højre parantes
50y=2(x3)+6(1x)y equals 2 left p'ren x minus 3 right p'ren plus 6 left p'ren 1 minus x right p'reny lig med 2 venstre parantes x minus 3 højre parantes plustegn 6 venstre parantes 1 minus x højre parantes
510.25>516 0.25 greater than five sixteenths0,25 større end fem sekstendedele
5232(57)32 dot left p'ren 5 dot 7 right p'ren32 prik venstre parantes 5 prik 7 højre parantes
53(12×12×π×2)+(2×12×π×5)left p'ren one half times one half times pi times 2 right p'ren plus left p'ren 2 times one half times pi times 5 right p'renvenstre parantes en halve krydsprodukt en halve krydsprodukt pi krydsprodukt 2 højre parantes plustegn venstre parantes 2 krydsprodukt en halve krydsprodukt pi krydsprodukt 5 højre parantes
54liminfnEn=n1knEk,limsupnEn=n1knEk.liminf Underscript n right arrow infinity Endscripts upper E Sub n Base equals union Underscript n greater than or equals 1 Endscripts intersection Underscript k greater than or equals n Endscripts upper E Sub k Base comma limsup Underscript n right arrow infinity Endscripts upper E Sub n Base equals intersection Underscript n greater than or equals 1 Endscripts union Underscript k greater than or equals n Endscripts upper E Sub k Base periodlimes inferior Undertekst n højrevendt pil uendelig stort E Sænket n Basis lig med forening Undertekst n større end eller lig med 1 snit Undertekst k større end eller lig med n stort E Sænket k Basis komma limes superior Undertekst n højrevendt pil uendelig stort E Sænket n Basis lig med snit Undertekst n større end eller lig med 1 forening Undertekst k større end eller lig med n stort E Sænket k Basis prik
55(i)𝒮𝒜;(ii)ifE𝒜thenE𝒜;(iii)ifE1,E2𝒜thenE1E2𝒜.StartLayout 1st Row 1st Column left p'ren i right p'ren 2nd Column script upper S element of script upper A semicolon 2nd Row 1st Column left p'ren ii right p'ren 2nd Column if upper E element of script upper A then upper E overbar element of script upper A semicolon 3rd Row 1st Column left p'ren iii right p'ren 2nd Column if upper E 1 comma upper E 2 element of script upper A then upper E 1 union upper E 2 element of script upper A period EndLayoutStartLayout 1. Row 1. Column venstre parantes I højre parantes 2. Column håndskrift stort S håndskrift element i håndskrift stort A håndskrift semikolon 2. Row 1. Column venstre parantes ii højre parantes 2. Column if stort E element i håndskrift stort A håndskrift then stort E overbar element i håndskrift stort A håndskrift semikolon 3. Row 1. Column venstre parantes iii højre parantes 2. Column if stort E 1 komma stort E 2 element i håndskrift stort A håndskrift then stort E 1 forening stort E 2 element i håndskrift stort A håndskrift prik EndLayout
56(A.1)IfAthen0P{A}1.(1)(A.2)P{𝒮}=1.(2)(A.3)If{En,n1}is a sequence ofdisjoint(3)StartLayout 1st Row 1st Column Blank 2nd Column Blank 3rd Column left p'ren normal upper A period 1 right p'ren upper I f upper A element of script upper F t h e n 0 less than or equals upper P left brace upper A right brace less than or equals 1 period 4th Column left p'ren 1 right p'ren 2nd Row 1st Column Blank 2nd Column Blank 3rd Column left p'ren normal upper A period 2 right p'ren upper P left brace script upper S right brace equals 1 period 4th Column left p'ren 2 right p'ren 3rd Row 1st Column Blank 2nd Column Blank 3rd Column left p'ren normal upper A period 3 right p'ren upper I f left brace upper E Sub n Base comma n greater than or equals 1 right brace element of script upper F is a sequence of disjoint 4th Column left p'ren 3 right p'ren EndLayoutStartLayout 1. Row 1. Column Blank 2. Column Blank 3. Column venstre parantes normal stort A prik 1 højre parantes stort I f stort A element i håndskrift stort F håndskrift t h e n 0 mindre end eller lig med stort P venstre tuborg parantes stort A højre tuborg parantes mindre end eller lig med 1 prik 4. Column venstre parantes 1 højre parantes 2. Row 1. Column Blank 2. Column Blank 3. Column venstre parantes normal stort A prik 2 højre parantes stort P venstre tuborg parantes håndskrift stort S håndskrift højre tuborg parantes lig med 1 prik 4. Column venstre parantes 2 højre parantes 3. Row 1. Column Blank 2. Column Blank 3. Column venstre parantes normal stort A prik 3 højre parantes stort I f venstre tuborg parantes stort E Sænket n Basis komma n større end eller lig med 1 højre tuborg parantes element i håndskrift stort F håndskrift is a sequence of disjoint 4. Column venstre parantes 3 højre parantes EndLayout
57P{Bj|A}=P{Bj}P{A|Bj}jJP{Bj}P{A|Bj}.upper P left brace upper B Sub j Base vertical bar upper A right brace equals StartFrac upper P left brace upper B Sub j Base right brace upper P left brace upper A vertical bar upper B Sub j Base right brace Over sigma summation Underscript j prime element of upper J Endscripts upper P left brace upper B Sub j prime Base right brace upper P left brace upper A vertical bar upper B Sub j prime Base right brace EndFrac periodstort P venstre tuborg parantes stort B Sænket j Basis lodret linie stort A højre tuborg parantes lig med Start Brøk stort P venstre tuborg parantes stort B Sænket j Basis højre tuborg parantes stort P venstre tuborg parantes stort A lodret linie stort B Sænket j Basis højre tuborg parantes Over sum Undertekst j mærke element i stort J stort P venstre tuborg parantes stort B Sænket j mærke Basis højre tuborg parantes stort P venstre tuborg parantes stort A lodret linie stort B Sænket j mærke Basis højre tuborg parantes Slut Brøk prik
58μ1(B)=Bf(x)dμ2(x)mu 1 left p'ren upper B right p'ren equals integral Underscript upper B Endscripts f left p'ren x right p'ren d mu 2 left p'ren x right p'renmy 1 venstre parantes stort B højre parantes lig med integral Undertekst stort B f venstre parantes x højre parantes d my 2 venstre parantes x højre parantes
59limnE{|XnX|}=E{limn|XnX|}=0.limit Underscript n right arrow infinity Endscripts upper E left brace StartAbsoluteValue upper X Sub n Base minus upper X EndAbsoluteValue right brace equals upper E left brace limit Underscript n right arrow infinity Endscripts StartAbsoluteValue upper X Sub n Base minus upper X EndAbsoluteValue right brace equals 0 periodgrænseværdi Undertekst n højrevendt pil uendelig stort E venstre tuborg parantes StartAbsoluteValue stort X Sænket n Basis minus stort X EndAbsoluteValue højre tuborg parantes lig med stort E venstre tuborg parantes grænseværdi Undertekst n højrevendt pil uendelig StartAbsoluteValue stort X Sænket n Basis minus stort X EndAbsoluteValue højre tuborg parantes lig med 0 prik
60Pμ,σ{Ylβ(Yn,Sn)}=Pμ,σ{(YYn)/(S·(1+1n)1/2)tβ[n1]}=β,(1)StartLayout 1st Row 1st Column upper P Sub mu comma sigma Base left brace upper Y greater than or equals l Sub beta Base left p'ren upper Y overbar Sub n Base comma upper S Sub n Base right p'ren right brace equals upper P Sub mu comma sigma Base left brace left p'ren upper Y minus upper Y overbar Sub n Base right p'ren divided by left p'ren upper S dot left p'ren 1 plus StartFrac 1 Over n EndFrac right p'ren Sup 1 divided by 2 Base right p'ren greater than or equals minus t Sub beta Base left brack n minus 1 right brack right brace equals beta comma 2nd Row 1st Column Blank 2nd Column left p'ren 1 right p'ren EndLayoutStartLayout 1. Row 1. Column stort P Sænket my komma sigma Basis venstre tuborg parantes stort Y større end eller lig med l Sænket beta Basis venstre parantes stort Y overbar Sænket n Basis komma stort S Sænket n Basis højre parantes højre tuborg parantes lig med stort P Sænket my komma sigma Basis venstre tuborg parantes venstre parantes stort Y minus stort Y overbar Sænket n Basis højre parantes divided by venstre parantes stort S prik venstre parantes 1 plustegn Start Brøk 1 Over n Slut Brøk højre parantes Hævet 1 divided by 2 Basis højre parantes større end eller lig med minus t Sænket beta Basis kantet venstreparentes n minus 1 kantet højreparentes højre tuborg parantes lig med beta komma 2. Row 1. Column Blank 2. Column venstre parantes 1 højre parantes EndLayout
61L=(11110011).upper L equals Start 5 By 6 Matrix 1st Row 1st Column 1 2nd Column negative 1 3rd Column Blank 4th Column Blank 5th Column Blank 6th Column Blank 2nd Row 1st Column Blank 2nd Column 1 3rd Column negative 1 4th Column Blank 5th Column 0 6th Column Blank 3rd Row 1st Column Blank 2nd Column Blank 3rd Column Blank 4th Column Blank 5th Column Blank 6th Column Blank 4th Row 1st Column Blank 2nd Column 0 3rd Column Blank 4th Column Blank 5th Column Blank 6th Column Blank 5th Row 1st Column Blank 2nd Column Blank 3rd Column Blank 4th Column Blank 5th Column 1 6th Column negative 1 EndMatrix periodstort L lig med Start 5 By 6 Matrix 1. Row 1. Column 1 2. Column negative 1 3. Column Blank 4. Column Blank 5. Column Blank 6. Column Blank 2. Row 1. Column Blank 2. Column 1 3. Column negative 1 4. Column Blank 5. Column 0 6. Column Blank 3. Row 1. Column Blank 2. Column Blank 3. Column Blank 4. Column Blank 5. Column Blank 6. Column Blank 4. Row 1. Column Blank 2. Column 0 3. Column Blank 4. Column Blank 5. Column Blank 6. Column Blank 5. Row 1. Column Blank 2. Column Blank 3. Column Blank 4. Column Blank 5. Column 1 6. Column negative 1 EndMatrix prik
62n[Yn(μ+zβσ)]/Sn~U+nz1β(χ2[n1]/(n1))1/2~t[n1;nz1β],StartRoot n EndRoot left brack upper Y overbar Sub n Base minus left p'ren mu plus z Sub beta Base sigma right p'ren right brack divided by upper S Sub n Base tilde StartFrac upper U plus StartRoot n EndRoot z Sub 1 minus beta Base Over left p'ren chi squared left brack n minus 1 right brack divided by left p'ren n minus 1 right p'ren right p'ren Sup 1 divided by 2 Base EndFrac tilde t left brack n minus 1 semicolon StartRoot n EndRoot z Sub 1 minus beta Base right brack commaStartRod n SlutRot kantet venstreparentes stort Y overbar Sænket n Basis minus venstre parantes my plustegn z Sænket beta Basis sigma højre parantes kantet højreparentes divided by stort S Sænket n Basis tilde Start Brøk stort U plustegn StartRod n SlutRot z Sænket 1 minus beta Basis Over venstre parantes chi squared kantet venstreparentes n minus 1 kantet højreparentes divided by venstre parantes n minus 1 højre parantes højre parantes Hævet 1 divided by 2 Basis Slut Brøk tilde t kantet venstreparentes n minus 1 semikolon StartRod n SlutRot z Sænket 1 minus beta Basis kantet højreparentes komma
63γ=P{Ep,q(X(r),X(s)}=n!(r1)!j=0 sr1(1)jpr+j(nrj)!j!I1q(ns+1,srj).StartLayout 1st Row 1st Column gamma 2nd Column equals upper P left brace upper E Sub p comma q Base subset of left p'ren upper X Sub left p'ren r right p'ren Base comma upper X Sub left p'ren s right p'ren Base right brace 2nd Row 1st Column Blank 2nd Column equals StartFrac n factorial Over left p'ren r minus 1 right p'ren factorial EndFrac sigma summation Underscript j equals 0 Overscript s minus r minus 1 Endscripts left p'ren negative 1 right p'ren Sup j Base StartFrac p Sup r plus j Base Over left p'ren n minus r minus j right p'ren factorial j factorial EndFrac upper I Sub 1 minus q Base left p'ren n minus s plus 1 comma s minus r minus j right p'ren period EndLayoutStartLayout 1. Row 1. Column gamma 2. Column lig med stort P venstre tuborg parantes stort E Sænket p komma q Basis delmængde af venstre parantes stort X Sænket venstre parantes r højre parantes Basis komma stort X Sænket venstre parantes s højre parantes Basis højre tuborg parantes 2. Row 1. Column Blank 2. Column lig med Start Brøk n factorial Over venstre parantes r minus 1 højre parantes factorial Slut Brøk sum Undertekst j lig med 0 Overtekst s minus r minus 1 venstre parantes negative 1 højre parantes Hævet j Basis Start Brøk p Hævet r plustegn j Basis Over venstre parantes n minus r minus j højre parantes factorial j factorial Slut Brøk stort I Sænket 1 minus q Basis venstre parantes n minus s plustegn 1 komma s minus r minus j højre parantes prik EndLayout
64Sitx=1/m0airitx+(i1)/mbi,upper S Sub i Base StartBinomialOrMatrix t Choose x EndBinomialOrMatrix equals Start 2 By 2 Matrix 1st Row 1st Column 1 divided by m 2nd Column 0 2nd Row 1st Column a Sub i Base 2nd Column r Sub i Base EndMatrix StartBinomialOrMatrix t Choose x EndBinomialOrMatrix plus StartBinomialOrMatrix left p'ren i minus 1 right p'ren divided by m Choose b Sub i Base EndBinomialOrMatrix commastort S Sænket I Basis StartBinomialOrMatrix t Choose x EndBinomialOrMatrix lig med Start 2 By 2 Matrix 1. Row 1. Column 1 divided by m 2. Column 0 2. Row 1. Column a Sænket I Basis 2. Column r Sænket I Basis EndMatrix StartBinomialOrMatrix t Choose x EndBinomialOrMatrix plustegn StartBinomialOrMatrix venstre parantes I minus 1 højre parantes divided by m Choose b Sænket I Basis EndBinomialOrMatrix komma
65c1h42s12TTT(f(t+h)f(t))2dtc2h42sc 1 h Sup 4 minus 2 s Base less than or equals StartFrac 1 Over 2 upper T EndFrac integral Sub negative upper T Sup upper T Base left p'ren f left p'ren t plus h right p'ren minus f left p'ren t right p'ren right p'ren squared normal d t less than or equals c 2 h Sup 4 minus 2 sc 1 h Hævet 4 minus 2 s Basis mindre end eller lig med Start Brøk 1 Over 2 stort T Slut Brøk integral Sub negative stort T Sup stort T Base venstre parantes f venstre parantes t plustegn h højre parantes minus f venstre parantes t højre parantes højre parantes squared normal d t mindre end eller lig med c 2 h Hævet 4 minus 2 s
66C(0)C(h)ch42supper C left p'ren 0 right p'ren minus upper C left p'ren h right p'ren asymptotically equals c h Sup 4 minus 2 sstort C venstre parantes 0 højre parantes minus stort C venstre parantes h højre parantes asymptotisk lig med c h Hævet 4 minus 2 s
67S(ω)=limT12TTTf(t)eitωdt2.upper S left p'ren omega right p'ren equals limit Underscript upper T right arrow infinity Endscripts StartFrac 1 Over 2 upper T EndFrac StartAbsoluteValue integral Sub negative upper T Sup upper T Base comma f comma left p'ren comma t comma right p'ren comma normal e Sup italic i t omega Base comma normal d comma t EndAbsoluteValue squared periodstort S venstre parantes omega højre parantes lig med grænseværdi Undertekst stort T højrevendt pil uendelig Start Brøk 1 Over 2 stort T Slut Brøk StartAbsoluteValue integral Sub negative stort T Sup stort T Base komma f komma venstre parantes komma t komma højre parantes komma normal e Hævet kursiv I t omega Basis komma normal d komma t EndAbsoluteValue squared prik
680101[|f(t)f(u)|2+|tu|2]s/2dtdu<integral Sub 0 Sup 1 Base integral Sub 0 Sup 1 Base left brack StartAbsoluteValue f left p'ren t right p'ren minus f left p'ren u right p'ren EndAbsoluteValue squared plus StartAbsoluteValue t minus u EndAbsoluteValue squared right brack Sup negative s divided by 2 Base normal d t normal d u less than infinityintegral Sub 0 Sup 1 Base integral Sub 0 Sup 1 Base kantet venstreparentes StartAbsoluteValue f venstre parantes t højre parantes minus f venstre parantes u højre parantes EndAbsoluteValue squared plustegn StartAbsoluteValue t minus u EndAbsoluteValue squared kantet højreparentes Hævet negative s divided by 2 Basis normal d t normal d u mindre end uendelig
69EIEk+1|I|s=EIEk|I|sE(R1s+R2s).sans serif upper E left p'ren sigma summation Underscript upper I element of upper E Sub k plus 1 Base Endscripts StartAbsoluteValue upper I EndAbsoluteValue Sup s Base right p'ren equals sans serif upper E left p'ren sigma summation Underscript upper I element of upper E Sub k Base Endscripts StartAbsoluteValue upper I EndAbsoluteValue Sup s Base right p'ren sans serif upper E left p'ren upper R 1 Sup s Base plus upper R 2 Sup s Base right p'ren periodsans serif stort E venstre parantes sum Undertekst stort I element i stort E Sænket k plustegn 1 Basis StartAbsoluteValue stort I EndAbsoluteValue Hævet s Basis højre parantes lig med sans serif stort E venstre parantes sum Undertekst stort I element i stort E Sænket k Basis StartAbsoluteValue stort I EndAbsoluteValue Hævet s Basis højre parantes sans serif stort E venstre parantes stort R 1 Hævet s Basis plustegn stort R 2 Hævet s Basis højre parantes prik
70(x1,y1)left p'ren x 1 comma y 1 right p'renvenstre parantes x 1 komma y 1 højre parantes
71(x2,y2)left p'ren x 2 comma y 2 right p'renvenstre parantes x 2 komma y 2 højre parantes
72d=(x2x1)2+(y2y1)2d equals StartRoot left p'ren x 2 minus x 1 right p'ren squared plus left p'ren y 2 minus y 1 right p'ren squared EndRootd lig med StartRod venstre parantes x 2 minus x 1 højre parantes squared plustegn venstre parantes y 2 minus y 1 højre parantes squared SlutRot
73double struck upper Rdobbeltstreget stort R dobbeltstreget
74=(,)double struck upper R equals left p'ren negative infinity comma infinity right p'rendobbeltstreget stort R dobbeltstreget lig med venstre parantes negative uendelig komma uendelig højre parantes
75{ 1,2,3 }StartSet 1 comma 2 comma 3 EndSetStartSet 1 komma 2 komma 3 EndSet
761S1 element of upper S1 element i stort S
773S3 element of upper S3 element i stort S
784S4 not an element of upper S4 ikke element i stort S
79a=3x1+(1+x)2a equals StartRoot 3 x minus 1 EndRoot plus left p'ren 1 plus x right p'ren squareda lig med StartRod 3 x minus 1 SlutRot plustegn venstre parantes 1 plustegn x højre parantes squared
80a=(b+c)2d+(e+f)2ga equals StartFrac left p'ren b plus c right p'ren squared Over d EndFrac plus StartFrac left p'ren e plus f right p'ren squared Over g EndFraca lig med Start Brøk venstre parantes b plustegn c højre parantes squared Over d Slut Brøk plustegn Start Brøk venstre parantes e plustegn f højre parantes squared Over g Slut Brøk
81x=[ (a+b)2(cb)2 ]+[ (d+e)2(fe)2 ]x equals left brack left p'ren a plus b right p'ren squared left p'ren c minus b right p'ren squared right brack plus left brack left p'ren d plus e right p'ren squared left p'ren f minus e right p'ren squared right brackx lig med kantet venstreparentes venstre parantes a plustegn b højre parantes squared venstre parantes c minus b højre parantes squared kantet højreparentes plustegn kantet venstreparentes venstre parantes d plustegn e højre parantes squared venstre parantes f minus e højre parantes squared kantet højreparentes
82x=[ (a+b)2 ]+[ (fe)2 ]x equals left brack left p'ren a plus b right p'ren squared right brack plus left brack left p'ren f minus e right p'ren squared right brackx lig med kantet venstreparentes venstre parantes a plustegn b højre parantes squared kantet højreparentes plustegn kantet venstreparentes venstre parantes f minus e højre parantes squared kantet højreparentes
83x=[ (a+b)2 ]x equals left brack left p'ren a plus b right p'ren squared right brackx lig med kantet venstreparentes venstre parantes a plustegn b højre parantes squared kantet højreparentes
84x=(a+b)2x equals left p'ren a plus b right p'ren squaredx lig med venstre parantes a plustegn b højre parantes squared
85x=a+b2x equals a plus b squaredx lig med a plustegn b squared
861234=23StartFrac one half Over three fourths EndFrac equals two thirdsStart Brøk en halve Over tre fjerdedele Slut Brøk lig med to tredjedele
872((x+1)(x+3)4((x1)(x+2)3))=y2 left p'ren left p'ren x plus 1 right p'ren left p'ren x plus 3 right p'ren minus 4 left p'ren left p'ren x minus 1 right p'ren left p'ren x plus 2 right p'ren minus 3 right p'ren right p'ren equals y2 venstre parantes venstre parantes x plustegn 1 højre parantes venstre parantes x plustegn 3 højre parantes minus 4 venstre parantes venstre parantes x minus 1 højre parantes venstre parantes x plustegn 2 højre parantes minus 3 højre parantes højre parantes lig med y
88cosx=1x22!+x44!cosine x equals 1 minus StartFrac x squared Over 2 factorial EndFrac plus StartFrac x Sup 4 Base Over 4 factorial EndFrac minus ellipsiscosinus x lig med 1 minus Start Brøk x squared Over 2 factorial Slut Brøk plustegn Start Brøk x Hævet 4 Basis Over 4 factorial Slut Brøk minus prik prik prik
89x=b±b24ac2ax equals StartFrac negative b plus or minus StartRoot b squared minus 4 a c EndRoot Over 2 a EndFracx lig med Start Brøk negative b plus minus StartRod b squared minus 4 a c SlutRot Over 2 a Slut Brøk
90x+y2k+1x plus y Sup StartFrac 2 Over k plus 1 EndFracx plustegn y Hævet Start Brøk 2 Over k plustegn 1 Slut Brøk
91limx0sinxx=1limit Underscript x right arrow 0 Endscripts StartFrac sine x Over x EndFrac equals 1grænseværdi Undertekst x højrevendt pil 0 Start Brøk sinus x Over x Slut Brøk lig med 1
92d=(x2x1)2+(y2y1)2d equals StartRoot left p'ren x 2 minus x 1 right p'ren squared plus left p'ren y 2 minus y 1 right p'ren squared EndRootd lig med StartRod venstre parantes x 2 minus x 1 højre parantes squared plustegn venstre parantes y 2 minus y 1 højre parantes squared SlutRot
93Fn=Fn1+Fn2upper F Sub n Base equals upper F Sub n minus 1 Base plus upper F Sub n minus 2stort F Sænket n Basis lig med stort F Sænket n minus 1 Basis plustegn stort F Sænket n minus 2
94Π=(π11π12π12000π12π11π12000π12π12π11000000π44000000π44000000π44)bold upper Pi equals Start 6 By 6 Matrix 1st Row 1st Column pi 11 2nd Column pi 12 3rd Column pi 12 4th Column 0 5th Column 0 6th Column 0 2nd Row 1st Column pi 12 2nd Column pi 11 3rd Column pi 12 4th Column 0 5th Column 0 6th Column 0 3rd Row 1st Column pi 12 2nd Column pi 12 3rd Column pi 11 4th Column 0 5th Column 0 6th Column 0 4th Row 1st Column 0 2nd Column 0 3rd Column 0 4th Column pi 44 5th Column 0 6th Column 0 5th Row 1st Column 0 2nd Column 0 3rd Column 0 4th Column 0 5th Column pi 44 6th Column 0 6th Row 1st Column 0 2nd Column 0 3rd Column 0 4th Column 0 5th Column 0 6th Column pi 44 EndMatrixfed stort Pi lig med Start 6 By 6 Matrix 1. Row 1. Column pi 11 2. Column pi 12 3. Column pi 12 4. Column 0 5. Column 0 6. Column 0 2. Row 1. Column pi 12 2. Column pi 11 3. Column pi 12 4. Column 0 5. Column 0 6. Column 0 3. Row 1. Column pi 12 2. Column pi 12 3. Column pi 11 4. Column 0 5. Column 0 6. Column 0 4. Row 1. Column 0 2. Column 0 3. Column 0 4. Column pi 44 5. Column 0 6. Column 0 5. Row 1. Column 0 2. Column 0 3. Column 0 4. Column 0 5. Column pi 44 6. Column 0 6. Row 1. Column 0 2. Column 0 3. Column 0 4. Column 0 5. Column 0 6. Column pi 44 EndMatrix
95s11=c11+c12c11c12c11+2c12s 11 equals StartFrac c 11 plus c 12 Over left p'ren c 11 minus c 12 right p'ren left p'ren c 11 plus 2 c 12 right p'ren EndFracs 11 lig med Start Brøk c 11 plustegn c 12 Over venstre parantes c 11 minus c 12 højre parantes venstre parantes c 11 plustegn 2 c 12 højre parantes Slut Brøk
96SiO2+ 6HF H2 SiF6+ 2H2O upper S i normal upper O 2 plus 6 normal upper H normal upper F right arrow normal upper H 2 upper S i normal upper F 6 plus 2 normal upper H 2 normal upper Ostort S I normal stort O 2 plustegn 6 normal stort H normal stort F højrevendt pil normal stort H 2 stort S I normal stort F 6 plustegn 2 normal stort H 2 normal stort O
97ddx(E(x)A(x)dw(x)dx)+p(x)=0StartFrac d Over d x EndFrac left p'ren upper E left p'ren x right p'ren upper A left p'ren x right p'ren StartFrac d w left p'ren x right p'ren Over d x EndFrac right p'ren plus p left p'ren x right p'ren equals 0Start Brøk d Over d x Slut Brøk venstre parantes stort E venstre parantes x højre parantes stort A venstre parantes x højre parantes Start Brøk d w venstre parantes x højre parantes Over d x Slut Brøk højre parantes plustegn p venstre parantes x højre parantes lig med 0
98TCSgas=12PsealPmax1TsealTCS Sub gas Base equals minus one half left p'ren StartFrac upper P Sub seal Base Over upper P Sub max Base EndFrac right p'ren left p'ren StartFrac 1 Over upper T Sub seal Base EndFrac right p'renTCS Sænket gas Basis lig med minus en halve venstre parantes Start Brøk stort P Sænket seal Basis Over stort P Sænket maksimum Basis Slut Brøk højre parantes venstre parantes Start Brøk 1 Over stort T Sænket seal Basis Slut Brøk højre parantes
99Bp=7v231+c2a2+c4a4+3v2c21+va21v1c4a41c2a2upper B Sub p Base equals StartStartFrac StartFrac 7 minus v squared Over 3 EndFrac left p'ren 1 plus StartFrac c squared Over a squared EndFrac plus StartFrac c Sup 4 Base Over a Sup 4 Base EndFrac right p'ren plus StartFrac left p'ren 3 minus v right p'ren squared c squared Over left p'ren 1 plus v right p'ren a squared EndFrac OverOver left p'ren 1 minus v right p'ren left p'ren 1 minus StartFrac c Sup 4 Base Over a Sup 4 Base EndFrac right p'ren left p'ren 1 minus StartFrac c squared Over a squared EndFrac right p'ren EndEndFracstort B Sænket p Basis lig med Start Start Brøk Start Brøk 7 minus v squared Over 3 Slut Brøk venstre parantes 1 plustegn Start Brøk c squared Over a squared Slut Brøk plustegn Start Brøk c Hævet 4 Basis Over a Hævet 4 Basis Slut Brøk højre parantes plustegn Start Brøk venstre parantes 3 minus v højre parantes squared c squared Over venstre parantes 1 plustegn v højre parantes a squared Slut Brøk Over Over venstre parantes 1 minus v højre parantes venstre parantes 1 minus Start Brøk c Hævet 4 Basis Over a Hævet 4 Basis Slut Brøk højre parantes venstre parantes 1 minus Start Brøk c squared Over a squared Slut Brøk højre parantes Slut Slut Brøk
100Qtankseries=1RsLsCsupper Q Sub tank Sup series Base equals StartFrac 1 Over upper R Sub s Base EndFrac StartRoot StartFrac upper L Sub s Base Over upper C Sub s Base EndFrac EndRootstort Q Sænket tank Hævet series Basis lig med Start Brøk 1 Over stort R Sænket s Basis Slut Brøk StartRod Start Brøk stort L Sænket s Basis Over stort C Sænket s Basis Slut Brøk SlutRot
101Δϕpeak=tan1(k2Qtankseries)upper Delta phi Sub peak Base equals tangent Sup negative 1 Base left p'ren k squared upper Q Sub tank Sup series Base right p'rentrekant phi Sænket peak Basis lig med tangens Hævet negative 1 Basis venstre parantes k squared stort Q Sænket tank Hævet series Basis højre parantes
102f=1.013WL2Eρ(1+0.293L2EW2σ)f equals 1.013 StartFrac upper W Over upper L squared EndFrac StartRoot StartFrac upper E Over rho EndFrac EndRoot StartRoot left p'ren 1 plus 0.293 StartFrac upper L squared Over EW squared EndFrac sigma right p'ren EndRootf lig med 1.013 Start Brøk stort W Over stort L squared Slut Brøk StartRod Start Brøk stort E Over rho Slut Brøk SlutRot StartRod venstre parantes 1 plustegn 0.293 Start Brøk stort L squared Over EW squared Slut Brøk sigma højre parantes SlutRot
103unx=γncoshknxcosknx+sinhknxsinknxu Sub n Base left p'ren x right p'ren equals gamma Sub n Base left p'ren hyperbolic cosine k Sub n Base x minus cosine k Sub n Base x right p'ren plus left p'ren hyperbolic sine k Sub n Base x minus sine k Sub n Base x right p'renu Sænket n Basis venstre parantes x højre parantes lig med gamma Sænket n Basis venstre parantes hyperbolsk cosinus k Sænket n Basis x minus cosinus k Sænket n Basis x højre parantes plustegn venstre parantes sinus hyperbolsk k Sænket n Basis x minus sinus k Sænket n Basis x højre parantes
104B=F0m(ω02ω2)2+4n2ω2=F0k(1(ω/ω02)2)2+4(n/ω0)2(ω/ω0)2StartLayout 1st Row 1st Column upper B 2nd Column equals StartStartFrac StartFrac upper F 0 Over m EndFrac OverOver StartRoot left p'ren omega 0 squared minus omega squared right p'ren squared plus 4 n squared omega squared EndRoot EndEndFrac 2nd Row 1st Column Blank 2nd Column equals StartStartFrac StartFrac upper F 0 Over k EndFrac OverOver StartRoot left p'ren 1 minus left p'ren omega divided by omega 0 squared right p'ren squared right p'ren squared plus 4 left p'ren n divided by omega 0 right p'ren squared left p'ren omega divided by omega 0 right p'ren squared EndRoot EndEndFrac EndLayoutStartLayout 1. Row 1. Column stort B 2. Column lig med Start Start Brøk Start Brøk stort F 0 Over m Slut Brøk Over Over StartRod venstre parantes omega 0 squared minus omega squared højre parantes squared plustegn 4 n squared omega squared SlutRot Slut Slut Brøk 2. Row 1. Column Blank 2. Column lig med Start Start Brøk Start Brøk stort F 0 Over k Slut Brøk Over Over StartRod venstre parantes 1 minus venstre parantes omega divided by omega 0 squared højre parantes squared højre parantes squared plustegn 4 venstre parantes n divided by omega 0 højre parantes squared venstre parantes omega divided by omega 0 højre parantes squared SlutRot Slut Slut Brøk EndLayout
105p(AandB)=p(A)p(B|A)normal p left p'ren upper A a n d upper B right p'ren equals normal p left p'ren upper A right p'ren normal p left p'ren upper B vertical bar upper A right p'rennormal p venstre parantes stort A a n d stort B højre parantes lig med normal p venstre parantes stort A højre parantes normal p venstre parantes stort B lodret linie stort A højre parantes
106PMF(x)1xαupper P upper M upper F left p'ren x right p'ren proportional to left p'ren StartFrac 1 Over x EndFrac right p'ren Sup alphastort P stort M stort F venstre parantes x højre parantes proportional til venstre parantes Start Brøk 1 Over x Slut Brøk højre parantes Hævet alfa
107f(x)=12πexp(-x2/2)f left p'ren x right p'ren equals StartFrac 1 Over StartRoot 2 pi EndRoot EndFrac exp left p'ren minus x squared slash 2 right p'renf venstre parantes x højre parantes lig med Start Brøk 1 Over StartRod 2 pi SlutRot Slut Brøk eksponentiel venstre parantes minus x squared skråstreg 2 højre parantes
108dxdθ=βcos2θStartFrac d x Over d theta EndFrac equals StartFrac beta Over cosine squared theta EndFracStart Brøk d x Over d theta Slut Brøk lig med Start Brøk beta Over cosinus squared theta Slut Brøk
109s/2(n-1)s divided by StartRoot 2 left p'ren n minus 1 right p'ren EndRoots divided by StartRod 2 venstre parantes n minus 1 højre parantes SlutRot

Danish Mathspeak Steve Noble's samples. Locale: da, Style: Superbrief.

0515623=negative 5 and one fifth minus 6 and two thirds equalsnegative 5 and en femtedel minus 6 and to tredjedele lig med
1734(478)=negative 7 and three fourths minus L p'ren negative 4 and seven eighths R p'ren equalsnegative 7 and tre fjerdedele minus venstre parantes negative 4 and syv ottendedele højre parantes lig med
224.15(13.7)=negative 24.15 minus L p'ren 13.7 R p'ren equalsnegative 24,15 minus venstre parantes 13,7 højre parantes lig med
3(4)×3=12L p'ren negative 4 R p'ren times 3 equals negative 12venstre parantes negative 4 højre parantes krydsprodukt 3 lig med negative 12
412÷3=4negative 12 divided by 3 equals negative 4negative 12 divided by 3 lig med negative 4
512÷(4)=3negative 12 divided by L p'ren negative 4 R p'ren equals 3negative 12 divided by venstre parantes negative 4 højre parantes lig med 3
66×56 times 56 krydsprodukt 5
76×(5)6 times L p'ren negative 5 R p'ren6 krydsprodukt venstre parantes negative 5 højre parantes
86×5negative 6 times 5negative 6 krydsprodukt 5
96×(5)negative 6 times L p'ren negative 5 R p'rennegative 6 krydsprodukt venstre parantes negative 5 højre parantes
108×7negative 8 times 7negative 8 krydsprodukt 7
118×(7)negative 8 times L p'ren negative 7 R p'rennegative 8 krydsprodukt venstre parantes negative 7 højre parantes
128×(7)8 times L p'ren negative 7 R p'ren8 krydsprodukt venstre parantes negative 7 højre parantes
138×78 times 78 krydsprodukt 7
14m1=30°m angle 1 equals 30 degreem vinkel 1 lig med 30 grader
15m2=60° m angle 2 equals 60 degreem vinkel 2 lig med 60 grader
16m1+m2=90° m angle 1 plus m angle 2 equals 90 degreem vinkel 1 plustegn m vinkel 2 lig med 90 grader
17mM+mN=180° m angle upper M plus m angle upper N equals 180 degreem vinkel stort M plustegn m vinkel stort N lig med 180 grader
18A=12bhupper A equals one half b hstort A lig med en halve b h
19area of trianglearea of square=1 unit216 units2Frac area of triangle Over area of square EndFrac equals Frac 1 unit squared Over 16 units squared EndFracBrøk area of triangle Over area of square SlutBrøk lig med Brøk 1 unit squared Over 16 units squared SlutBrøk
200.620.6 squared0,6 squared
211.52 1.5 squared1,5 squared
224(2x+3x)4 L p'ren 2 x plus 3 x R p'ren4 venstre parantes 2 x plustegn 3 x højre parantes
2336+4y1y2+5y2236 plus 4 y minus 1 y squared plus 5 y squared minus 236 plustegn 4 y minus 1 y squared plustegn 5 y squared minus 2
24(5+9)4+3=L p'ren 5 plus 9 R p'ren minus 4 plus 3 equalsvenstre parantes 5 plustegn 9 højre parantes minus 4 plustegn 3 lig med
25BCModAbove upper B upper C With L R arrowModAbove stort B stort C With venstre-højre-pil
26PQModAbove upper P upper Q With R arrowModAbove stort P stort Q With højrevendt pil
27GH¯ModAbove upper G upper H With barModAbove stort G stort H With streg over
28WX¯YZ¯ModAbove upper W upper X With bar approximately equals ModAbove upper Y upper Z With barModAbove stort W stort X With streg over tilnærmelsesvist lig med ModAbove stort Y stort Z With streg over
29BEFangle upper B upper E upper Fvinkel stort B stort E stort F
30BEDangle upper B upper E upper Dvinkel stort B stort E stort D
31DEFangle upper D upper E upper Fvinkel stort D stort E stort F
32x=b±b24ac2ax equals Frac negative b plus or minus Root b squared minus 4 a c EndRoot Over 2 a EndFracx lig med Brøk negative b plus minus Rod b squared minus 4 a c SlutRot Over 2 a SlutBrøk
33y=x2+8x+16y equals x squared plus 8 x plus 16y lig med x squared plustegn 8 x plustegn 16
34y=13(3x)y equals one third L p'ren 3 Sup x Base R p'reny lig med en tredjedel venstre parantes 3 Hævet x Basis højre parantes
35y=102xy equals 10 minus 2 xy lig med 10 minus 2 x
36y=2x3+5y equals 2 x cubed plus 5y lig med 2 x cubed plustegn 5
37y=(x2+1)(x2+3)y equals L p'ren x squared plus 1 R p'ren L p'ren x squared plus 3 R p'reny lig med venstre parantes x squared plustegn 1 højre parantes venstre parantes x squared plustegn 3 højre parantes
38y=0.5xy equals 0.5 Sup xy lig med 0,5 Hævet x
39y=222xy equals 22 minus 2 xy lig med 22 minus 2 x
40y=3xy equals Frac 3 Over x EndFracy lig med Brøk 3 Over x SlutBrøk
41y=(x+4)(x+4)y equals L p'ren x plus 4 R p'ren L p'ren x plus 4 R p'reny lig med venstre parantes x plustegn 4 højre parantes venstre parantes x plustegn 4 højre parantes
42y=(4x3)(x+1)y equals L p'ren 4 x minus 3 R p'ren L p'ren x plus 1 R p'reny lig med venstre parantes 4 x minus 3 højre parantes venstre parantes x plustegn 1 højre parantes
43y=20x4x2y equals 20 x minus 4 x squaredy lig med 20 x minus 4 x squared
44y=x2y equals x squaredy lig med x squared
45y=3x1y equals 3 Sup x minus 1y lig med 3 Hævet x minus 1
46y=162(x+3)y equals 16 minus 2 L p'ren x plus 3 R p'reny lig med 16 minus 2 venstre parantes x plustegn 3 højre parantes
47y=4x2x3y equals 4 x squared minus x minus 3y lig med 4 x squared minus x minus 3
48y=x+1xy equals x plus Frac 1 Over x EndFracy lig med x plustegn Brøk 1 Over x SlutBrøk
49y=4x(5x)y equals 4 x L p'ren 5 minus x R p'reny lig med 4 x venstre parantes 5 minus x højre parantes
50y=2(x3)+6(1x)y equals 2 L p'ren x minus 3 R p'ren plus 6 L p'ren 1 minus x R p'reny lig med 2 venstre parantes x minus 3 højre parantes plustegn 6 venstre parantes 1 minus x højre parantes
510.25>516 0.25 greater than five sixteenths0,25 større end fem sekstendedele
5232(57)32 dot L p'ren 5 dot 7 R p'ren32 prik venstre parantes 5 prik 7 højre parantes
53(12×12×π×2)+(2×12×π×5)L p'ren one half times one half times pi times 2 R p'ren plus L p'ren 2 times one half times pi times 5 R p'renvenstre parantes en halve krydsprodukt en halve krydsprodukt pi krydsprodukt 2 højre parantes plustegn venstre parantes 2 krydsprodukt en halve krydsprodukt pi krydsprodukt 5 højre parantes
54liminfnEn=n1knEk,limsupnEn=n1knEk.liminf Underscript n R arrow infinity Endscripts upper E Sub n Base equals union Underscript n greater than or equals 1 Endscripts intersection Underscript k greater than or equals n Endscripts upper E Sub k Base comma limsup Underscript n R arrow infinity Endscripts upper E Sub n Base equals intersection Underscript n greater than or equals 1 Endscripts union Underscript k greater than or equals n Endscripts upper E Sub k Base periodlimes inferior Undertekst n højrevendt pil uendelig stort E Sænket n Basis lig med forening Undertekst n større end eller lig med 1 snit Undertekst k større end eller lig med n stort E Sænket k Basis komma limes superior Undertekst n højrevendt pil uendelig stort E Sænket n Basis lig med snit Undertekst n større end eller lig med 1 forening Undertekst k større end eller lig med n stort E Sænket k Basis prik
55(i)𝒮𝒜;(ii)ifE𝒜thenE𝒜;(iii)ifE1,E2𝒜thenE1E2𝒜.Layout 1st Row 1st Column L p'ren i R p'ren 2nd Column script upper S element of script upper A semicolon 2nd Row 1st Column L p'ren ii R p'ren 2nd Column if upper E element of script upper A then upper E overbar element of script upper A semicolon 3rd Row 1st Column L p'ren iii R p'ren 2nd Column if upper E 1 comma upper E 2 element of script upper A then upper E 1 union upper E 2 element of script upper A period EndLayoutLayout 1. Row 1. Column venstre parantes I højre parantes 2. Column håndskrift stort S håndskrift element i håndskrift stort A håndskrift semikolon 2. Row 1. Column venstre parantes ii højre parantes 2. Column if stort E element i håndskrift stort A håndskrift then stort E overbar element i håndskrift stort A håndskrift semikolon 3. Row 1. Column venstre parantes iii højre parantes 2. Column if stort E 1 komma stort E 2 element i håndskrift stort A håndskrift then stort E 1 forening stort E 2 element i håndskrift stort A håndskrift prik EndLayout
56(A.1)IfAthen0P{A}1.(1)(A.2)P{𝒮}=1.(2)(A.3)If{En,n1}is a sequence ofdisjoint(3)Layout 1st Row 1st Column Blank 2nd Column Blank 3rd Column L p'ren normal upper A period 1 R p'ren upper I f upper A element of script upper F t h e n 0 less than or equals upper P L brace upper A R brace less than or equals 1 period 4th Column L p'ren 1 R p'ren 2nd Row 1st Column Blank 2nd Column Blank 3rd Column L p'ren normal upper A period 2 R p'ren upper P L brace script upper S R brace equals 1 period 4th Column L p'ren 2 R p'ren 3rd Row 1st Column Blank 2nd Column Blank 3rd Column L p'ren normal upper A period 3 R p'ren upper I f L brace upper E Sub n Base comma n greater than or equals 1 R brace element of script upper F is a sequence of disjoint 4th Column L p'ren 3 R p'ren EndLayoutLayout 1. Row 1. Column Blank 2. Column Blank 3. Column venstre parantes normal stort A prik 1 højre parantes stort I f stort A element i håndskrift stort F håndskrift t h e n 0 mindre end eller lig med stort P venstre tuborg parantes stort A højre tuborg parantes mindre end eller lig med 1 prik 4. Column venstre parantes 1 højre parantes 2. Row 1. Column Blank 2. Column Blank 3. Column venstre parantes normal stort A prik 2 højre parantes stort P venstre tuborg parantes håndskrift stort S håndskrift højre tuborg parantes lig med 1 prik 4. Column venstre parantes 2 højre parantes 3. Row 1. Column Blank 2. Column Blank 3. Column venstre parantes normal stort A prik 3 højre parantes stort I f venstre tuborg parantes stort E Sænket n Basis komma n større end eller lig med 1 højre tuborg parantes element i håndskrift stort F håndskrift is a sequence of disjoint 4. Column venstre parantes 3 højre parantes EndLayout
57P{Bj|A}=P{Bj}P{A|Bj}jJP{Bj}P{A|Bj}.upper P L brace upper B Sub j Base vertical bar upper A R brace equals Frac upper P L brace upper B Sub j Base R brace upper P L brace upper A vertical bar upper B Sub j Base R brace Over sigma summation Underscript j prime element of upper J Endscripts upper P L brace upper B Sub j prime Base R brace upper P L brace upper A vertical bar upper B Sub j prime Base R brace EndFrac periodstort P venstre tuborg parantes stort B Sænket j Basis lodret linie stort A højre tuborg parantes lig med Brøk stort P venstre tuborg parantes stort B Sænket j Basis højre tuborg parantes stort P venstre tuborg parantes stort A lodret linie stort B Sænket j Basis højre tuborg parantes Over sum Undertekst j mærke element i stort J stort P venstre tuborg parantes stort B Sænket j mærke Basis højre tuborg parantes stort P venstre tuborg parantes stort A lodret linie stort B Sænket j mærke Basis højre tuborg parantes SlutBrøk prik
58μ1(B)=Bf(x)dμ2(x)mu 1 L p'ren upper B R p'ren equals integral Underscript upper B Endscripts f L p'ren x R p'ren d mu 2 L p'ren x R p'renmy 1 venstre parantes stort B højre parantes lig med integral Undertekst stort B f venstre parantes x højre parantes d my 2 venstre parantes x højre parantes
59limnE{|XnX|}=E{limn|XnX|}=0.limit Underscript n R arrow infinity Endscripts upper E L brace AbsoluteValue upper X Sub n Base minus upper X EndAbsoluteValue R brace equals upper E L brace limit Underscript n R arrow infinity Endscripts AbsoluteValue upper X Sub n Base minus upper X EndAbsoluteValue R brace equals 0 periodgrænseværdi Undertekst n højrevendt pil uendelig stort E venstre tuborg parantes AbsoluteValue stort X Sænket n Basis minus stort X EndAbsoluteValue højre tuborg parantes lig med stort E venstre tuborg parantes grænseværdi Undertekst n højrevendt pil uendelig AbsoluteValue stort X Sænket n Basis minus stort X EndAbsoluteValue højre tuborg parantes lig med 0 prik
60Pμ,σ{Ylβ(Yn,Sn)}=Pμ,σ{(YYn)/(S·(1+1n)1/2)tβ[n1]}=β,(1)Layout 1st Row 1st Column upper P Sub mu comma sigma Base L brace upper Y greater than or equals l Sub beta Base L p'ren upper Y overbar Sub n Base comma upper S Sub n Base R p'ren R brace equals upper P Sub mu comma sigma Base L brace L p'ren upper Y minus upper Y overbar Sub n Base R p'ren divided by L p'ren upper S dot L p'ren 1 plus Frac 1 Over n EndFrac R p'ren Sup 1 divided by 2 Base R p'ren greater than or equals minus t Sub beta Base L brack n minus 1 R brack R brace equals beta comma 2nd Row 1st Column Blank 2nd Column L p'ren 1 R p'ren EndLayoutLayout 1. Row 1. Column stort P Sænket my komma sigma Basis venstre tuborg parantes stort Y større end eller lig med l Sænket beta Basis venstre parantes stort Y overbar Sænket n Basis komma stort S Sænket n Basis højre parantes højre tuborg parantes lig med stort P Sænket my komma sigma Basis venstre tuborg parantes venstre parantes stort Y minus stort Y overbar Sænket n Basis højre parantes divided by venstre parantes stort S prik venstre parantes 1 plustegn Brøk 1 Over n SlutBrøk højre parantes Hævet 1 divided by 2 Basis højre parantes større end eller lig med minus t Sænket beta Basis kantet venstreparentes n minus 1 kantet højreparentes højre tuborg parantes lig med beta komma 2. Row 1. Column Blank 2. Column venstre parantes 1 højre parantes EndLayout
61L=(11110011).upper L equals 5 By 6 Matrix 1st Row 1st Column 1 2nd Column negative 1 3rd Column Blank 4th Column Blank 5th Column Blank 6th Column Blank 2nd Row 1st Column Blank 2nd Column 1 3rd Column negative 1 4th Column Blank 5th Column 0 6th Column Blank 3rd Row 1st Column Blank 2nd Column Blank 3rd Column Blank 4th Column Blank 5th Column Blank 6th Column Blank 4th Row 1st Column Blank 2nd Column 0 3rd Column Blank 4th Column Blank 5th Column Blank 6th Column Blank 5th Row 1st Column Blank 2nd Column Blank 3rd Column Blank 4th Column Blank 5th Column 1 6th Column negative 1 EndMatrix periodstort L lig med 5 By 6 Matrix 1. Row 1. Column 1 2. Column negative 1 3. Column Blank 4. Column Blank 5. Column Blank 6. Column Blank 2. Row 1. Column Blank 2. Column 1 3. Column negative 1 4. Column Blank 5. Column 0 6. Column Blank 3. Row 1. Column Blank 2. Column Blank 3. Column Blank 4. Column Blank 5. Column Blank 6. Column Blank 4. Row 1. Column Blank 2. Column 0 3. Column Blank 4. Column Blank 5. Column Blank 6. Column Blank 5. Row 1. Column Blank 2. Column Blank 3. Column Blank 4. Column Blank 5. Column 1 6. Column negative 1 EndMatrix prik
62n[Yn(μ+zβσ)]/Sn~U+nz1β(χ2[n1]/(n1))1/2~t[n1;nz1β],Root n EndRoot L brack upper Y overbar Sub n Base minus L p'ren mu plus z Sub beta Base sigma R p'ren R brack divided by upper S Sub n Base tilde Frac upper U plus Root n EndRoot z Sub 1 minus beta Base Over L p'ren chi squared L brack n minus 1 R brack divided by L p'ren n minus 1 R p'ren R p'ren Sup 1 divided by 2 Base EndFrac tilde t L brack n minus 1 semicolon Root n EndRoot z Sub 1 minus beta Base R brack commaRod n SlutRot kantet venstreparentes stort Y overbar Sænket n Basis minus venstre parantes my plustegn z Sænket beta Basis sigma højre parantes kantet højreparentes divided by stort S Sænket n Basis tilde Brøk stort U plustegn Rod n SlutRot z Sænket 1 minus beta Basis Over venstre parantes chi squared kantet venstreparentes n minus 1 kantet højreparentes divided by venstre parantes n minus 1 højre parantes højre parantes Hævet 1 divided by 2 Basis SlutBrøk tilde t kantet venstreparentes n minus 1 semikolon Rod n SlutRot z Sænket 1 minus beta Basis kantet højreparentes komma
63γ=P{Ep,q(X(r),X(s)}=n!(r1)!j=0 sr1(1)jpr+j(nrj)!j!I1q(ns+1,srj).Layout 1st Row 1st Column gamma 2nd Column equals upper P L brace upper E Sub p comma q Base subset of L p'ren upper X Sub L p'ren r R p'ren Base comma upper X Sub L p'ren s R p'ren Base R brace 2nd Row 1st Column Blank 2nd Column equals Frac n factorial Over L p'ren r minus 1 R p'ren factorial EndFrac sigma summation Underscript j equals 0 Overscript s minus r minus 1 Endscripts L p'ren negative 1 R p'ren Sup j Base Frac p Sup r plus j Base Over L p'ren n minus r minus j R p'ren factorial j factorial EndFrac upper I Sub 1 minus q Base L p'ren n minus s plus 1 comma s minus r minus j R p'ren period EndLayoutLayout 1. Row 1. Column gamma 2. Column lig med stort P venstre tuborg parantes stort E Sænket p komma q Basis delmængde af venstre parantes stort X Sænket venstre parantes r højre parantes Basis komma stort X Sænket venstre parantes s højre parantes Basis højre tuborg parantes 2. Row 1. Column Blank 2. Column lig med Brøk n factorial Over venstre parantes r minus 1 højre parantes factorial SlutBrøk sum Undertekst j lig med 0 Overtekst s minus r minus 1 venstre parantes negative 1 højre parantes Hævet j Basis Brøk p Hævet r plustegn j Basis Over venstre parantes n minus r minus j højre parantes factorial j factorial SlutBrøk stort I Sænket 1 minus q Basis venstre parantes n minus s plustegn 1 komma s minus r minus j højre parantes prik EndLayout
64Sitx=1/m0airitx+(i1)/mbi,upper S Sub i Base BinomialOrMatrix t Choose x EndBinomialOrMatrix equals 2 By 2 Matrix 1st Row 1st Column 1 divided by m 2nd Column 0 2nd Row 1st Column a Sub i Base 2nd Column r Sub i Base EndMatrix BinomialOrMatrix t Choose x EndBinomialOrMatrix plus BinomialOrMatrix L p'ren i minus 1 R p'ren divided by m Choose b Sub i Base EndBinomialOrMatrix commastort S Sænket I Basis BinomialOrMatrix t Choose x EndBinomialOrMatrix lig med 2 By 2 Matrix 1. Row 1. Column 1 divided by m 2. Column 0 2. Row 1. Column a Sænket I Basis 2. Column r Sænket I Basis EndMatrix BinomialOrMatrix t Choose x EndBinomialOrMatrix plustegn BinomialOrMatrix venstre parantes I minus 1 højre parantes divided by m Choose b Sænket I Basis EndBinomialOrMatrix komma
65c1h42s12TTT(f(t+h)f(t))2dtc2h42sc 1 h Sup 4 minus 2 s Base less than or equals Frac 1 Over 2 upper T EndFrac integral Sub negative upper T Sup upper T Base L p'ren f L p'ren t plus h R p'ren minus f L p'ren t R p'ren R p'ren squared normal d t less than or equals c 2 h Sup 4 minus 2 sc 1 h Hævet 4 minus 2 s Basis mindre end eller lig med Brøk 1 Over 2 stort T SlutBrøk integral Sub negative stort T Sup stort T Base venstre parantes f venstre parantes t plustegn h højre parantes minus f venstre parantes t højre parantes højre parantes squared normal d t mindre end eller lig med c 2 h Hævet 4 minus 2 s
66C(0)C(h)ch42supper C L p'ren 0 R p'ren minus upper C L p'ren h R p'ren asymptotically equals c h Sup 4 minus 2 sstort C venstre parantes 0 højre parantes minus stort C venstre parantes h højre parantes asymptotisk lig med c h Hævet 4 minus 2 s
67S(ω)=limT12TTTf(t)eitωdt2.upper S L p'ren omega R p'ren equals limit Underscript upper T R arrow infinity Endscripts Frac 1 Over 2 upper T EndFrac AbsoluteValue integral Sub negative upper T Sup upper T Base comma f comma L p'ren comma t comma R p'ren comma normal e Sup italic i t omega Base comma normal d comma t EndAbsoluteValue squared periodstort S venstre parantes omega højre parantes lig med grænseværdi Undertekst stort T højrevendt pil uendelig Brøk 1 Over 2 stort T SlutBrøk AbsoluteValue integral Sub negative stort T Sup stort T Base komma f komma venstre parantes komma t komma højre parantes komma normal e Hævet kursiv I t omega Basis komma normal d komma t EndAbsoluteValue squared prik
680101[|f(t)f(u)|2+|tu|2]s/2dtdu<integral Sub 0 Sup 1 Base integral Sub 0 Sup 1 Base L brack AbsoluteValue f L p'ren t R p'ren minus f L p'ren u R p'ren EndAbsoluteValue squared plus AbsoluteValue t minus u EndAbsoluteValue squared R brack Sup negative s divided by 2 Base normal d t normal d u less than infinityintegral Sub 0 Sup 1 Base integral Sub 0 Sup 1 Base kantet venstreparentes AbsoluteValue f venstre parantes t højre parantes minus f venstre parantes u højre parantes EndAbsoluteValue squared plustegn AbsoluteValue t minus u EndAbsoluteValue squared kantet højreparentes Hævet negative s divided by 2 Basis normal d t normal d u mindre end uendelig
69EIEk+1|I|s=EIEk|I|sE(R1s+R2s).sans serif upper E L p'ren sigma summation Underscript upper I element of upper E Sub k plus 1 Base Endscripts AbsoluteValue upper I EndAbsoluteValue Sup s Base R p'ren equals sans serif upper E L p'ren sigma summation Underscript upper I element of upper E Sub k Base Endscripts AbsoluteValue upper I EndAbsoluteValue Sup s Base R p'ren sans serif upper E L p'ren upper R 1 Sup s Base plus upper R 2 Sup s Base R p'ren periodsans serif stort E venstre parantes sum Undertekst stort I element i stort E Sænket k plustegn 1 Basis AbsoluteValue stort I EndAbsoluteValue Hævet s Basis højre parantes lig med sans serif stort E venstre parantes sum Undertekst stort I element i stort E Sænket k Basis AbsoluteValue stort I EndAbsoluteValue Hævet s Basis højre parantes sans serif stort E venstre parantes stort R 1 Hævet s Basis plustegn stort R 2 Hævet s Basis højre parantes prik
70(x1,y1)L p'ren x 1 comma y 1 R p'renvenstre parantes x 1 komma y 1 højre parantes
71(x2,y2)L p'ren x 2 comma y 2 R p'renvenstre parantes x 2 komma y 2 højre parantes
72d=(x2x1)2+(y2y1)2d equals Root L p'ren x 2 minus x 1 R p'ren squared plus L p'ren y 2 minus y 1 R p'ren squared EndRootd lig med Rod venstre parantes x 2 minus x 1 højre parantes squared plustegn venstre parantes y 2 minus y 1 højre parantes squared SlutRot
73double struck upper Rdobbeltstreget stort R dobbeltstreget
74=(,)double struck upper R equals L p'ren negative infinity comma infinity R p'rendobbeltstreget stort R dobbeltstreget lig med venstre parantes negative uendelig komma uendelig højre parantes
75{ 1,2,3 }Set 1 comma 2 comma 3 EndSetSet 1 komma 2 komma 3 EndSet
761S1 element of upper S1 element i stort S
773S3 element of upper S3 element i stort S
784S4 not an element of upper S4 ikke element i stort S
79a=3x1+(1+x)2a equals Root 3 x minus 1 EndRoot plus L p'ren 1 plus x R p'ren squareda lig med Rod 3 x minus 1 SlutRot plustegn venstre parantes 1 plustegn x højre parantes squared
80a=(b+c)2d+(e+f)2ga equals Frac L p'ren b plus c R p'ren squared Over d EndFrac plus Frac L p'ren e plus f R p'ren squared Over g EndFraca lig med Brøk venstre parantes b plustegn c højre parantes squared Over d SlutBrøk plustegn Brøk venstre parantes e plustegn f højre parantes squared Over g SlutBrøk
81x=[ (a+b)2(cb)2 ]+[ (d+e)2(fe)2 ]x equals L brack L p'ren a plus b R p'ren squared L p'ren c minus b R p'ren squared R brack plus L brack L p'ren d plus e R p'ren squared L p'ren f minus e R p'ren squared R brackx lig med kantet venstreparentes venstre parantes a plustegn b højre parantes squared venstre parantes c minus b højre parantes squared kantet højreparentes plustegn kantet venstreparentes venstre parantes d plustegn e højre parantes squared venstre parantes f minus e højre parantes squared kantet højreparentes
82x=[ (a+b)2 ]+[ (fe)2 ]x equals L brack L p'ren a plus b R p'ren squared R brack plus L brack L p'ren f minus e R p'ren squared R brackx lig med kantet venstreparentes venstre parantes a plustegn b højre parantes squared kantet højreparentes plustegn kantet venstreparentes venstre parantes f minus e højre parantes squared kantet højreparentes
83x=[ (a+b)2 ]x equals L brack L p'ren a plus b R p'ren squared R brackx lig med kantet venstreparentes venstre parantes a plustegn b højre parantes squared kantet højreparentes
84x=(a+b)2x equals L p'ren a plus b R p'ren squaredx lig med venstre parantes a plustegn b højre parantes squared
85x=a+b2x equals a plus b squaredx lig med a plustegn b squared
861234=23Frac one half Over three fourths EndFrac equals two thirdsBrøk en halve Over tre fjerdedele SlutBrøk lig med to tredjedele
872((x+1)(x+3)4((x1)(x+2)3))=y2 L p'ren L p'ren x plus 1 R p'ren L p'ren x plus 3 R p'ren minus 4 L p'ren L p'ren x minus 1 R p'ren L p'ren x plus 2 R p'ren minus 3 R p'ren R p'ren equals y2 venstre parantes venstre parantes x plustegn 1 højre parantes venstre parantes x plustegn 3 højre parantes minus 4 venstre parantes venstre parantes x minus 1 højre parantes venstre parantes x plustegn 2 højre parantes minus 3 højre parantes højre parantes lig med y
88cosx=1x22!+x44!cosine x equals 1 minus Frac x squared Over 2 factorial EndFrac plus Frac x Sup 4 Base Over 4 factorial EndFrac minus ellipsiscosinus x lig med 1 minus Brøk x squared Over 2 factorial SlutBrøk plustegn Brøk x Hævet 4 Basis Over 4 factorial SlutBrøk minus prik prik prik
89x=b±b24ac2ax equals Frac negative b plus or minus Root b squared minus 4 a c EndRoot Over 2 a EndFracx lig med Brøk negative b plus minus Rod b squared minus 4 a c SlutRot Over 2 a SlutBrøk
90x+y2k+1x plus y Sup Frac 2 Over k plus 1 EndFracx plustegn y Hævet Brøk 2 Over k plustegn 1 SlutBrøk
91limx0sinxx=1limit Underscript x R arrow 0 Endscripts Frac sine x Over x EndFrac equals 1grænseværdi Undertekst x højrevendt pil 0 Brøk sinus x Over x SlutBrøk lig med 1
92d=(x2x1)2+(y2y1)2d equals Root L p'ren x 2 minus x 1 R p'ren squared plus L p'ren y 2 minus y 1 R p'ren squared EndRootd lig med Rod venstre parantes x 2 minus x 1 højre parantes squared plustegn venstre parantes y 2 minus y 1 højre parantes squared SlutRot
93Fn=Fn1+Fn2upper F Sub n Base equals upper F Sub n minus 1 Base plus upper F Sub n minus 2stort F Sænket n Basis lig med stort F Sænket n minus 1 Basis plustegn stort F Sænket n minus 2
94Π=(π11π12π12000π12π11π12000π12π12π11000000π44000000π44000000π44)bold upper Pi equals 6 By 6 Matrix 1st Row 1st Column pi 11 2nd Column pi 12 3rd Column pi 12 4th Column 0 5th Column 0 6th Column 0 2nd Row 1st Column pi 12 2nd Column pi 11 3rd Column pi 12 4th Column 0 5th Column 0 6th Column 0 3rd Row 1st Column pi 12 2nd Column pi 12 3rd Column pi 11 4th Column 0 5th Column 0 6th Column 0 4th Row 1st Column 0 2nd Column 0 3rd Column 0 4th Column pi 44 5th Column 0 6th Column 0 5th Row 1st Column 0 2nd Column 0 3rd Column 0 4th Column 0 5th Column pi 44 6th Column 0 6th Row 1st Column 0 2nd Column 0 3rd Column 0 4th Column 0 5th Column 0 6th Column pi 44 EndMatrixfed stort Pi lig med 6 By 6 Matrix 1. Row 1. Column pi 11 2. Column pi 12 3. Column pi 12 4. Column 0 5. Column 0 6. Column 0 2. Row 1. Column pi 12 2. Column pi 11 3. Column pi 12 4. Column 0 5. Column 0 6. Column 0 3. Row 1. Column pi 12 2. Column pi 12 3. Column pi 11 4. Column 0 5. Column 0 6. Column 0 4. Row 1. Column 0 2. Column 0 3. Column 0 4. Column pi 44 5. Column 0 6. Column 0 5. Row 1. Column 0 2. Column 0 3. Column 0 4. Column 0 5. Column pi 44 6. Column 0 6. Row 1. Column 0 2. Column 0 3. Column 0 4. Column 0 5. Column 0 6. Column pi 44 EndMatrix
95s11=c11+c12c11c12c11+2c12s 11 equals Frac c 11 plus c 12 Over L p'ren c 11 minus c 12 R p'ren L p'ren c 11 plus 2 c 12 R p'ren EndFracs 11 lig med Brøk c 11 plustegn c 12 Over venstre parantes c 11 minus c 12 højre parantes venstre parantes c 11 plustegn 2 c 12 højre parantes SlutBrøk
96SiO2+ 6HF H2 SiF6+ 2H2O upper S i normal upper O 2 plus 6 normal upper H normal upper F R arrow normal upper H 2 upper S i normal upper F 6 plus 2 normal upper H 2 normal upper Ostort S I normal stort O 2 plustegn 6 normal stort H normal stort F højrevendt pil normal stort H 2 stort S I normal stort F 6 plustegn 2 normal stort H 2 normal stort O
97ddx(E(x)A(x)dw(x)dx)+p(x)=0Frac d Over d x EndFrac L p'ren upper E L p'ren x R p'ren upper A L p'ren x R p'ren Frac d w L p'ren x R p'ren Over d x EndFrac R p'ren plus p L p'ren x R p'ren equals 0Brøk d Over d x SlutBrøk venstre parantes stort E venstre parantes x højre parantes stort A venstre parantes x højre parantes Brøk d w venstre parantes x højre parantes Over d x SlutBrøk højre parantes plustegn p venstre parantes x højre parantes lig med 0
98TCSgas=12PsealPmax1TsealTCS Sub gas Base equals minus one half L p'ren Frac upper P Sub seal Base Over upper P Sub max Base EndFrac R p'ren L p'ren Frac 1 Over upper T Sub seal Base EndFrac R p'renTCS Sænket gas Basis lig med minus en halve venstre parantes Brøk stort P Sænket seal Basis Over stort P Sænket maksimum Basis SlutBrøk højre parantes venstre parantes Brøk 1 Over stort T Sænket seal Basis SlutBrøk højre parantes
99Bp=7v231+c2a2+c4a4+3v2c21+va21v1c4a41c2a2upper B Sub p Base equals NestFrac Frac 7 minus v squared Over 3 EndFrac L p'ren 1 plus Frac c squared Over a squared EndFrac plus Frac c Sup 4 Base Over a Sup 4 Base EndFrac R p'ren plus Frac L p'ren 3 minus v R p'ren squared c squared Over L p'ren 1 plus v R p'ren a squared EndFrac NestOver L p'ren 1 minus v R p'ren L p'ren 1 minus Frac c Sup 4 Base Over a Sup 4 Base EndFrac R p'ren L p'ren 1 minus Frac c squared Over a squared EndFrac R p'ren NestEndFracstort B Sænket p Basis lig med IndlejrBrøkBrøk Brøk 7 minus v squared Over 3 SlutBrøk venstre parantes 1 plustegn Brøk c squared Over a squared SlutBrøk plustegn Brøk c Hævet 4 Basis Over a Hævet 4 Basis SlutBrøk højre parantes plustegn Brøk venstre parantes 3 minus v højre parantes squared c squared Over venstre parantes 1 plustegn v højre parantes a squared SlutBrøk IndlejrBrøkOver venstre parantes 1 minus v højre parantes venstre parantes 1 minus Brøk c Hævet 4 Basis Over a Hævet 4 Basis SlutBrøk højre parantes venstre parantes 1 minus Brøk c squared Over a squared SlutBrøk højre parantes IndlejrBrøkSlutBrøk
100Qtankseries=1RsLsCsupper Q Sub tank Sup series Base equals Frac 1 Over upper R Sub s Base EndFrac Root Frac upper L Sub s Base Over upper C Sub s Base EndFrac EndRootstort Q Sænket tank Hævet series Basis lig med Brøk 1 Over stort R Sænket s Basis SlutBrøk Rod Brøk stort L Sænket s Basis Over stort C Sænket s Basis SlutBrøk SlutRot
101Δϕpeak=tan1(k2Qtankseries)upper Delta phi Sub peak Base equals tangent Sup negative 1 Base L p'ren k squared upper Q Sub tank Sup series Base R p'rentrekant phi Sænket peak Basis lig med tangens Hævet negative 1 Basis venstre parantes k squared stort Q Sænket tank Hævet series Basis højre parantes
102f=1.013WL2Eρ(1+0.293L2EW2σ)f equals 1.013 Frac upper W Over upper L squared EndFrac Root Frac upper E Over rho EndFrac EndRoot Root L p'ren 1 plus 0.293 Frac upper L squared Over EW squared EndFrac sigma R p'ren EndRootf lig med 1.013 Brøk stort W Over stort L squared SlutBrøk Rod Brøk stort E Over rho SlutBrøk SlutRot Rod venstre parantes 1 plustegn 0.293 Brøk stort L squared Over EW squared SlutBrøk sigma højre parantes SlutRot
103unx=γncoshknxcosknx+sinhknxsinknxu Sub n Base L p'ren x R p'ren equals gamma Sub n Base L p'ren hyperbolic cosine k Sub n Base x minus cosine k Sub n Base x R p'ren plus L p'ren hyperbolic sine k Sub n Base x minus sine k Sub n Base x R p'renu Sænket n Basis venstre parantes x højre parantes lig med gamma Sænket n Basis venstre parantes hyperbolsk cosinus k Sænket n Basis x minus cosinus k Sænket n Basis x højre parantes plustegn venstre parantes sinus hyperbolsk k Sænket n Basis x minus sinus k Sænket n Basis x højre parantes
104B=F0m(ω02ω2)2+4n2ω2=F0k(1(ω/ω02)2)2+4(n/ω0)2(ω/ω0)2Layout 1st Row 1st Column upper B 2nd Column equals NestFrac Frac upper F 0 Over m EndFrac NestOver Root L p'ren omega 0 squared minus omega squared R p'ren squared plus 4 n squared omega squared EndRoot NestEndFrac 2nd Row 1st Column Blank 2nd Column equals NestFrac Frac upper F 0 Over k EndFrac NestOver Root L p'ren 1 minus L p'ren omega divided by omega 0 squared R p'ren squared R p'ren squared plus 4 L p'ren n divided by omega 0 R p'ren squared L p'ren omega divided by omega 0 R p'ren squared EndRoot NestEndFrac EndLayoutLayout 1. Row 1. Column stort B 2. Column lig med IndlejrBrøkBrøk Brøk stort F 0 Over m SlutBrøk IndlejrBrøkOver Rod venstre parantes omega 0 squared minus omega squared højre parantes squared plustegn 4 n squared omega squared SlutRot IndlejrBrøkSlutBrøk 2. Row 1. Column Blank 2. Column lig med IndlejrBrøkBrøk Brøk stort F 0 Over k SlutBrøk IndlejrBrøkOver Rod venstre parantes 1 minus venstre parantes omega divided by omega 0 squared højre parantes squared højre parantes squared plustegn 4 venstre parantes n divided by omega 0 højre parantes squared venstre parantes omega divided by omega 0 højre parantes squared SlutRot IndlejrBrøkSlutBrøk EndLayout
105p(AandB)=p(A)p(B|A)normal p L p'ren upper A a n d upper B R p'ren equals normal p L p'ren upper A R p'ren normal p L p'ren upper B vertical bar upper A R p'rennormal p venstre parantes stort A a n d stort B højre parantes lig med normal p venstre parantes stort A højre parantes normal p venstre parantes stort B lodret linie stort A højre parantes
106PMF(x)1xαupper P upper M upper F L p'ren x R p'ren proportional to L p'ren Frac 1 Over x EndFrac R p'ren Sup alphastort P stort M stort F venstre parantes x højre parantes proportional til venstre parantes Brøk 1 Over x SlutBrøk højre parantes Hævet alfa
107f(x)=12πexp(-x2/2)f L p'ren x R p'ren equals Frac 1 Over Root 2 pi EndRoot EndFrac exp L p'ren minus x squared slash 2 R p'renf venstre parantes x højre parantes lig med Brøk 1 Over Rod 2 pi SlutRot SlutBrøk eksponentiel venstre parantes minus x squared skråstreg 2 højre parantes
108dxdθ=βcos2θFrac d x Over d theta EndFrac equals Frac beta Over cosine squared theta EndFracBrøk d x Over d theta SlutBrøk lig med Brøk beta Over cosinus squared theta SlutBrøk
109s/2(n-1)s divided by Root 2 L p'ren n minus 1 R p'ren EndRoots divided by Rod 2 venstre parantes n minus 1 højre parantes SlutRot